TABLE OF CONTENTS

DIVISION 23 - HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 02 00</td>
<td>BASIC MATERIALS AND METHODS FOR HVAC</td>
</tr>
<tr>
<td>23 05 13</td>
<td>COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT</td>
</tr>
<tr>
<td>23 05 16</td>
<td>EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING</td>
</tr>
<tr>
<td>23 05 29</td>
<td>HANGERS AND SUPPORTS FOR PIPING AND EQUIPMENT - HVAC</td>
</tr>
<tr>
<td>23 05 26</td>
<td>VARIABLE FREQUENCY MOTOR SPEED CONTROL FOR HVAC EQUIPMENT</td>
</tr>
<tr>
<td>23 05 48</td>
<td>VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>23 05 53</td>
<td>IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>23 05 93</td>
<td>TESTING, ADJUSTING, AND BALANCING</td>
</tr>
<tr>
<td>23 07 16</td>
<td>HVAC EQUIPMENT INSULATION</td>
</tr>
<tr>
<td>23 07 19</td>
<td>HVAC PIPING INSULATION</td>
</tr>
<tr>
<td>23 09 63</td>
<td>ENERGY MANAGEMENT AND CONTROL SYSTEM (EMCS)</td>
</tr>
<tr>
<td>23 21 13</td>
<td>ABOVE GROUND HYDRONIC PIPING</td>
</tr>
<tr>
<td>23 21 19</td>
<td>HYDRONIC SPECIALTIES</td>
</tr>
<tr>
<td>23 21 23</td>
<td>HYDRONIC PUMPS</td>
</tr>
<tr>
<td>23 25 13</td>
<td>WATER TREATMENT FOR CLOSED LOOP HYDRONIC SYSTEMS</td>
</tr>
<tr>
<td>23 64 23</td>
<td>AIR COOLED SCROLL WATER CHILLERS</td>
</tr>
</tbody>
</table>

DIVISION 26 - ELECTRICAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 02 00</td>
<td>BASIC MATERIALS AND METHODS FOR ELECTRICAL</td>
</tr>
</tbody>
</table>
26 03 13 ELECTRICAL DEMOLITION FOR REMODELING

26 05 19 WIRE, CABLE AND RELATED MATERIALS

26 05 26 GROUNDING

26 05 33 RACEWAYS

26 28 13 FUSES
PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all Work herein.

B. The Contract Drawings indicate the extent and general arrangement of the systems. If any departure from the Contract Drawings is deemed necessary by the Contractor, details of such departures and the reasons therefore, shall be submitted to the Architect/Engineer for review as soon as practicable. No such departures shall be made without the prior written approval of the Architect/Engineer.

C. Notwithstanding any reference in the Specifications to any article, device, product, material, fixture, form or type of construction by name, make or catalog number, such reference shall not be construed as limiting competition; and the Contractor, in such cases, may at his option use any article, device, product, material, fixture, form or type of construction which in the judgment of the Architect/Engineer, expressed in writing, is the equivalent of that specified.

1.2 SCOPE OF WORK

A. The Work included under this Contract consists of the furnishing and installation of all equipment and material necessary and required to form complete and functioning systems in all of their various phases, all as shown on the accompanying Drawings and/or described in these Specifications. The Contractor shall review all pertinent drawings, including those of other contracts, prior to commencement of Work.

B. This Division requires the furnishing and installing of all items as specified herein, indicated on the Drawings or reasonably inferred as necessary for safe and proper operation; including every article, device or accessory (whether or not specifically called for by item) reasonably necessary to facilitate each system's functioning as indicated by the design and the equipment specified. Elements of the work include, but are not limited to, materials, labor, supervision, transportation, storage, equipment, utilities, all required permits, licenses and inspections. All work performed under this Section shall be in accordance with the Project Manual, Drawings and Specifications and is subject to the terms and conditions of the Contract.

C. The approximate locations of Mechanical (HVAC) items are indicated on the Drawings. These Drawings are not intended to give complete and accurate details in regard to location of outlets, apparatus, etc. Exact locations are to be determined by actual measurements at the building, and will in all cases be subject to the review of the Owner or Engineer, who reserves the right to make any reasonable changes in the locations indicated without additional cost to the Owner.

D. Items specifically mentioned in the Specifications but not shown on the Drawings and/or items shown on Drawings but not specifically mentioned in the Specifications shall be installed by the Contractor under the appropriate section of work as if they were both specified and shown.

E. All discrepancies between the Contract Documents and actual job-site conditions shall be reported to the Owner or Engineer so that they will be resolved prior to bidding. Where this cannot be done at least 7 working days prior to bid; the greater or more costly of the discrepancy shall be bid. All labor and materials required to perform the work described shall be included as part of this Contract.

F. It is the intention of this Section of the Specifications to outline minimum requirements to furnish the Owner with a turn-key and fully operating system in cooperation with other trades.
G. It is the intent of the above "Scope" to give the Contractor a general outline of the extent of the Work involved; however, it is not intended to include each and every item required for the Work. Anything omitted from the "Scope" but shown on the Drawings, or specified later, or necessary for a complete and functioning heating, ventilating and air conditioning system shall be considered a part of the overall "Scope".

H. The Contractor shall rough-in fixtures and equipment furnished by others from rough-in and placement drawings furnished by others. The Contractor shall make final connection to fixtures and equipment furnished by others.

I. The Contractor shall participate in the commissioning process as required; including, but not limited to, meeting attendance, completion of checklists, and participation in functional testing.

1.3 SCHEMATIC NATURE OF CONTRACT DOCUMENTS

A. The Contract Documents are schematic in nature in that they are only to establish scope and a minimum level of quality. They are not to be used as actual working construction drawings. The actual working construction drawings shall be the reviewed shop drawings.

B. All duct or pipe or equipment locations as indicated on the documents do not indicate every transition, offset, or exact location. All transitions, offsets, clearances and exact locations shall be established by actual field measurements, coordination with the structural, architectural and reflected ceiling plans, and other trades. Submit shop drawings for review.

C. All transitions, offsets and relocations as required by actual field conditions shall be performed by the Contractor at no additional cost to the Owner.

D. Additional coordination with electrical contractor may be required to allow adequate clearances of electrical equipment, fixtures and associated appurtenances. Contractor to notify Architect and Engineer of unresolved clearances, conflicts or equipment locations.

1.4 SITE VISIT AND FAMILIARIZATION

A. Before submitting a bid, it will be necessary for each Contractor whose work is involved to visit the site and ascertain for himself the conditions to be met therein in installing his work and make due provision for same in his bid. It will be assumed that this Contractor in submitting his bid has visited the premises and that his bid covers all work necessary to properly install the equipment shown. Failure on the part of the Contractor to comply with this requirement shall not be considered justification for the omission or faulty installation of any work covered by these Specifications and Drawings.

B. Understand the existing utilities from which services will be supplied; verify locations of utility services, and determine requirements for connections.

C. Determine in advance that equipment and materials proposed for installation fit into the confines indicated.

1.5 WORK SPECIFIED IN OTHER SECTIONS

A. Finish painting is specified. Prime and protective painting are included in the work of this Division.

B. Owner and General Contractor furnished equipment shall be properly connected to Mechanical (HVAC) systems.

C. Furnishing and installing all required Mechanical (HVAC) equipment control relays and electrical interlock devices, conduit, wire and J-boxes are included in the Work of this Division.

1.6 PERMITS, TESTS, INSPECTIONS
A. Arrange and pay for all permits, fees, tests, and all inspections as required by governmental authorities.

1.7 DATE OF SUBSTANTIAL COMPLETION

A. The date of final acceptance shall be the date of substantial completion. Refer to Division One for additional requirements.

B. The date of final acceptance shall be documented in writing and signed by the Architect, Owner and Contractor.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to the project properly identified with names, model numbers, types, grades, compliance labels, and other information needed for identification.

B. Deliver products to the project at such time as the project is ready to receive the equipment, pipe or duct - properly protected from incidental damage and weather damage.

C. Damaged equipment, duct or pipe shall be promptly removed from the site and new, undamaged equipment, pipe or duct shall be installed in its place promptly with no additional charge to the Owner.

1.9 NOISE AND VIBRATION

A. The heating, ventilating and air conditioning systems, and the component parts thereof, shall be guaranteed to operate without objectionable noise and vibration.

B. Provide foundations, supports and isolators as specified or indicated, properly adjusted to prevent transmission of vibration to the building structure, piping and other items.

C. Carefully fabricate ductwork and fittings with smooth interior finish to prevent turbulence and generation or regeneration of noise.

D. All equipment shall be selected to operate with minimum of noise and vibration. If, in the opinion of the Architect, objectionable noise or vibration is produced or transmitted to or through the building structure by equipment, piping, ducts or other parts of the Work, the Contractor shall rectify such conditions without extra cost to the Owner.

1.10 APPLICABLE CODES AND STANDARDS

A. Obtain all required permits and inspections for all work required by the Contract Documents and pay all required fees in connection thereof.

B. Arrange with the serving utility companies for the connection of all required utilities and pay all charges, meter charges, connection fees and inspection fees, if required.

C. Comply with all applicable codes, specifications, local ordinances, industry standards, utility company regulations and the applicable requirements which includes and is not limited to the following nationally accepted codes and standards:

1. Air Moving & Conditioning Association, AMCA.
2. American Standards Association, ASA.
4. American Society of Mechanical Engineers, ASME.
5. American Society of Plumbing Engineers, ASPE.
6. American Society of Testing Materials, ASTM.
7. American Water Works Association, AWWA.
8. National Bureau of Standards, NBS.
10. Sheet Metal & Air Conditioning Contractors’ National Association, SMACNA.
11. Underwriters’ Laboratories, Inc., UL.
12. International Building Code, IBC.
15. International Fuel Gas Code, IFGC.
16. International Mechanical Code, IMC.

D. Where differences existing between the Contract Documents and applicable state or city building codes, state and local ordinances, industry standards, utility company regulations and the applicable requirements of the nationally accepted codes and standards, the more stringent or costly application shall govern. Promptly notify the Engineer in writing of all differences.

E. When directed in writing by the Engineer, remove all work installed that does not comply with the Contract Documents and applicable state or city building codes, state and local ordinances, industry standards, utility company regulations and the applicable requirements of the above listed nationally accepted codes and standards, correct the deficiencies, and complete the work at no additional cost to the Owner.

1.11 DEFINITIONS AND SYMBOLS

A. General Explanation: A substantial amount of construction and Specification language constitutes definitions for terms found in other Contract Documents, including Drawings which must be recognized as diagrammatic and schematic in nature and not completely descriptive of requirements indicated thereon. Certain terms used in Contract Documents are defined generally in this article, unless defined otherwise in Division 01.

B. Definitions and explanations of this Section are not necessarily either complete or exclusive, but are general for work to the extent not stated more explicitly in another provision of the Contract Documents.

C. Indicated: The term "Indicated" is a cross-reference to details, notes or schedules on the Drawings, to other paragraphs or schedules in the Specifications and to similar means of recording requirements in Contract Documents. Where such terms as "Shown", "Noted", "Scheduled", "Specified" and "Detailed" are used in lieu of "Indicated", it is for the purpose of helping the reader locate cross-reference material, and no limitation of location is intended except as specifically shown.

D. Directed: Where not otherwise explained, terms such as "Directed", "Requested", "Accepted", and "Permitted" mean by the Architect or Engineer. However, no such implied meaning will be interpreted to extend the Architect’s or Engineer’s responsibility into the Contractor’s area of construction supervision.

E. Reviewed: Where used in conjunction with the Engineer’s response to submittals, requests for information, applications, inquiries, reports and claims by the Contractor the meaning of the term "Reviewed" will be held to limitations of Architect’s and Engineer’s responsibilities and duties as specified in the General and Supplemental Conditions. In no case will "Reviewed" by Engineer be interpreted as a release of the Contractor from responsibility to fulfill the terms and requirements of the Contract Documents.

F. Furnish: Except as otherwise defined in greater detail, the term "Furnish" is used to mean supply and deliver to the project site, ready for unloading, unpacking, assembly, installation, etc., as applicable in each instance.

G. Install: Except as otherwise defined in greater detail, the term "Install" is used to describe operations at the project site including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protection, cleaning and similar operations, as applicable in each instance.
H. Provide: Except as otherwise defined in greater detail, the term "Provide" is used to mean "Furnish and Install", complete and ready for intended use, as applicable in each instance.

I. Installer: Entity (person or firm) engaged by the Contractor, or its Subcontractor or Sub-subcontractor for performance of a particular unit of work at the project site, including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protection, cleaning and similar operations, as applicable in each instance. It is a general requirement that such entities (Installers) be expert in the operations they are engaged to perform.

J. Imperative Language: Used generally in Specifications. Except as otherwise indicated, requirements expressed imperatively are to be performed by the Contractor. For clarity of reading at certain locations, contrasting subjective language is used to describe responsibilities that must be fulfilled indirectly by the Contractor or, when so noted, by other identified installers or entities.

K. Minimum Quality/Quantity: In every instance, the quality level or quantity shown or specified is intended as minimum quality level or quantity of work to be performed or provided. Except as otherwise specifically indicated, the actual work may either comply exactly with that minimum (within specified tolerances), or may exceed that minimum within reasonable tolerance limits. In complying with requirements, indicated or scheduled numeric values are either minimums or maximums as noted or as appropriate for the context of the requirements. Refer instances of uncertainty to Owner or Engineer via a request for information (RFI) for decision before proceeding.

L. Abbreviations and Symbols: The language of Specifications and other Contract Documents including Drawings is of an abbreviated type in certain instances, and implies words and meanings which will be appropriately interpreted. Actual word abbreviations of a self-explanatory nature have been included in text of Specifications and Drawings. Specific abbreviations and symbols have been established, principally for lengthy technical terminology and primarily in conjunction with coordination of Specification requirements with notations on Drawings and in Schedules. These are frequently defined in Section at first instance of use or on a Legend and Symbol Drawing. Trade and industry association names and titles of generally recognized industry standards are frequently abbreviated. Singular words will be interpreted as plural and plural words will be interpreted as singular where applicable and where full context of Contract Documents so indicate. Except as otherwise indicated, graphic symbols and abbreviations used on Drawings and in Specifications are those recognized in construction industry for indicated purposes. Where not otherwise noted symbols and abbreviations are defined by the latest ASHRAE Fundamentals Handbook, chapter 34 "Abbreviations and Symbols", ASME and ASPE published standards.

1.12 DRAWINGS AND SPECIFICATIONS

A. These Specifications are intended to supplement the Drawings and it will not be the province of the Specifications to mention any part of the Work which the Drawings are competent to fully explain in every particular and such omission is not to relieve the Contractor from carrying out portions indicated on the Drawings only.

B. Should items be required by these Specifications and not indicated on the Drawings, they are to be supplied even if of such nature that they could have been indicated thereon. In case of disagreement between Drawings and Specifications, or within either Drawings or Specifications, the better quality or greater quantity of work shall be estimated and the matter referred to the Architect or Engineer for review with a request for information and clarification at least 7 working days prior to bid opening date for issuance of an addendum.

C. The listing of product manufacturers, materials and methods in the various sections of the Specifications, and indicated on the Drawings, is intended to establish a standard of quality only. It is not the intention of the Owner or Engineer to discriminate against any product, material or method that is the equivalent of the standards as indicated and/or specified, nor is it intended to preclude open, competitive bidding. The fact that a specific manufacturer is listed as an acceptable manufacturer should not be interpreted to mean that the manufacturer’s standard product will meet the requirements of the project design, Drawings, Specifications and space constraints.

D. The Architect or Engineer and Owner shall be the sole judge of quality and equivalence of equipment, materials and methods.
E. Products by other reliable manufacturers, other materials, and other methods, will be accepted as outlined, provided they have equivalent capacity, construction, and performance. However, under no circumstances shall any substitution be made without the written permission of the Architect or Engineer and Owner. Request for prior approval must be made in writing 10 calendar days prior to the bid date without fail.

F. Wherever a definite product, material or method is specified and there is not a statement that another product, material or method will be acceptable, it is the intention of the Owner or Engineer that the specified product, material or method is the only one that shall be used without prior approval.

G. Wherever a definite material or manufacturer's product is specified and the Specification states that products of similar design and equivalent construction from the specified list of manufacturers may be substituted, it is the intention of the Owner or Engineer that products of manufacturers that are specified are the only products that will be acceptable and that products of other manufacturers will not be considered for substitution without approval.

H. Wherever a definite product, material or method is specified and there is a statement that "OR EQUIVALENT" product, material or method will be acceptable, it is the intention of the Owner or Engineer that the specified product, material or method or an "OR EQUIVALENT" product, material or method may be used if it complies with the Specifications and is submitted for review to the Engineer as outlined herein.

I. Where permission to use substituted or alternative equipment on the project is granted by the Owner or Engineer in writing, it shall be the responsibility of the Contractor or Subcontractor involved to verify that the equipment will fit in the space available which includes allowances for all required Code and maintenance clearances, and to coordinate all equipment structural support, plumbing and electrical requirements and provisions with the Mechanical (HVAC) Design Documents and all other trades, including Division 26.

J. Changes in architectural, structural, electrical, mechanical, and plumbing requirements for the substitution shall be the responsibility of the bidder wishing to make the substitution. This shall include the cost of redesign by the affected designer(s). Any additional cost incurred by affected Subcontractors shall be the responsibility of this bidder and not the Owner.

K. If any request for a substitution of product, material or method is rejected, the Contractor will automatically be required to furnish the product, material or method named in the Specifications. Repetitive requests for substitutions will not be considered.

L. The Owner or Engineer will investigate all requests for substitutions when submitted in accordance with the requirements listed above; and if accepted, will issue a letter allowing the substitutions.

M. Where equipment other than that used in the design as specified or shown on the Drawings is substituted (either from an approved manufacturers list or by submittal review), it shall be the responsibility of the Substituting Contractor to coordinate space requirements, building provisions and connection requirements with his trades and all other trades; and to pay all additional costs to other trades, the Owner, the Architect or Engineer, if any, due to the substitutions.

1.13 SUBMITTALS

A. Coordinate with Division 01 for submittal timetable requirements, unless noted otherwise within thirty (30) days after the Contract is awarded. The Contractor shall submit an electronic copy of a complete set of shop drawings and complete data covering each item of equipment or material. The submittal of each item requiring a submittal must be received by the Architect or Engineer within the above thirty-day period. The Architect or Engineer shall not be responsible for any delays or costs incurred due to excessive shop drawing review time for submittals received after the thirty (30) day time limit. The Architect and Engineer will retain a copy of all shop drawings for their files. All literature pertaining to items subject to Shop Drawing submittal shall be submitted at one time. Submittals shall be placed in one electronic file in PDF 8.0 format and bookmarked for individual specification sections. Individual electronic files of submittals for individual specifications shall not be permitted. Each submittal shall include the following items:
1. A cover sheet with the names and addresses of the Project, Architect, MEP Engineer, General Contractor and the Subcontractor making the submittal. The cover sheet shall also contain the section number covering the item or items submitted and the item nomenclature or description.

2. An index page with a listing of all data included in the Submittal.

3. A list of variations page with a listing of all variations, including unfurnished or additional required accessories, items or other features, between the submitted equipment and the specified equipment. If there are no variations, then this page shall state "NO VARIATIONS". Where variations affect the work of other Contractors, then the Contractor shall certify on this page that these variations have been fully coordinated with the affected Contractors and that all expenses associated with the variations will be paid by the submitting Contractor. This page will be signed by the submitting Contractor.

4. Equipment information including manufacturer's name and designation, size, performance and capacity data as applicable. All applicable Listings, Labels, Approvals and Standards shall be clearly indicated.

5. Dimensional data and scaled drawings as applicable to show that the submitted equipment will fit the space available with all required Code and maintenance clearances clearly indicated and labeled at a minimum scale of 1/4" = 1'-0", as required to demonstrate that the alternate or substituted product will fit in the space available.

6. Identification of each item of material or equipment matching that indicated on the Drawings.

7. Sufficient pictorial, descriptive and diagrammatic data on each item to show its conformance with the Drawings and Specifications. Any options or special requirements or accessories shall be so indicated. All applicable information shall be clearly indicated with arrows or another approved method.

8. Additional information as required in other Sections of this Division.

9. Certification by the General Contractor and Subcontractor that the material submitted is in accordance with the Drawings and Specifications, signed and dated in long hand. Submittals that do not comply with the above requirements shall be returned to the Contractor and shall be marked "REVISE AND RESUBMIT".

B. Refer to Division 00 and Division 01 for additional information on shop drawings and submittals.

C. Equipment and materials submittals and shop drawings will be reviewed for compliance with design concept only. It will be assumed that the submitting Contractor has verified that all items submitted can be installed in the space allotted. Review of shop drawings and submittals shall not be considered as a verification or guarantee of measurements or building conditions.

D. Where shop drawings and submittals are marked "REVIEWED", the review of the submittal does not indicate that submittals have been checked in detail nor does it in any way relieve the Contractor from his responsibility to furnish material and perform work as required by the Contract Documents.

E. Shop drawings shall be reviewed and returned to the Contractor with one of the following categories indicated:

1. REVIEWED: Contractor need take no further submittal action, shall include this submittal in the O&M manual and may order the equipment submitted on.

2. REVIEWED AS NOTED: Contractor shall submit a letter verifying that required exceptions to the submittal have been received and complied with including additional accessories or coordination action as noted, and shall include this submittal and compliance letter in the O&M Manual. The contractor may order the equipment submitted on at the time of the returned submittal providing the Contractor complies with the exceptions noted.

3. NOT APPROVED: Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is not approved. The Contractor will automatically be required to furnish the product, material or method named in the Specifications and/or Drawings. Contractor shall not order equipment that is not approved. Repetitive requests for substitutions will not be considered.

4. REVISE AND RESUBMIT: Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is marked revise and resubmit. The Contractor will automatically be required to furnish the product, material or method named in the Specifications and/or provide as noted on previous shop drawings.
Contractor shall not order equipment marked revise and resubmit. Repetitive requests for substitutions will not be considered.

5. CONTRACTOR’S CERTIFICATION REQUIRED: Contractor shall resubmit submittal on material, equipment or method of installation. The Contractor’s stamp is required stating that the submittal meets all conditions of the Contract Documents. The stamp shall be signed by the General Contractor. The submittal will not be reviewed if the stamp is not placed and signed on all shop drawings.

6. MANUFACTURER NOT AS SPECIFIED: Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is marked manufacturer not as specified. The Contractor will automatically be required to furnish the product, material or method named in the Specifications. Contractor shall not order equipment when submittal is marked manufacturer not as specified. Repetitive requests for substitutions will not be considered.

F. Materials and equipment which are purchased or installed without submittal review shall be at the risk of the Contractor and the cost for removal and replacement of such materials and equipment and related work which is judged unsatisfactory by the Owner or Engineer for any reason shall be at the expense of the Contractor. The responsible Contractor shall remove the material and equipment noted above and replace with specified equipment or material at his own expense when directed in writing by the Architect or Engineer.

G. Shop Drawing Submittals shall be complete and checked prior to submission to the Engineer for review.

H. Submittals are required for, but not limited to, the following items subject to project requirements:

1. Common Motor Requirements for HVAC Equipment
2. Expansion Fittings and Loops for HVAC Piping
3. Variable Frequency Motor Speed Control for HVAC Equipment
4. Hangers and Support for Piping and Equipment HVAC
5. Vibration and Seismic Controls for HVAC Piping and Equipment
6. Testing, Adjusting, and Balancing
7. HVAC Equipment Insulation
8. HVAC Piping Insulation
9. Energy Management and Control System
10. Above Ground Hydronic Piping
11. Hydronic Specialties
12. Hydronic Pumps
13. Air Cooled Rotary Liquid Chiller

I. Refer to other Division 23 sections for additional submittal requirements. Provide samples of actual materials and/or equipment to be used on the Project upon request of the Owner or Engineer.

1.14 COORDINATION DRAWINGS

A. Prepare coordination drawings to a scale of 1/4"=1'-0" or larger; detailing major elements, components, and systems of mechanical equipment and materials in relationship with other systems, installations, and building components. Indicate locations where space is limited for installation and access, and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including (but not necessarily limited to) the following:

1. Indicate the proposed locations of pipe, duct, equipment, and other materials. Include the following:
 a. Wall and type locations.
 b. Clearances for installing and maintaining insulation.
 c. Locations of light fixtures and sprinkler heads.
 d. Clearances for servicing and maintaining equipment, including tube removal, filter removal, and space for equipment disassembly required for periodic maintenance.
 e. Equipment connections and support details.
 f. Exterior wall and foundation penetrations.
 g. Routing of storm and sanitary sewer piping.
h. Fire-rated wall and floor penetrations.
i. Sizes and location of required concrete pads and bases.
j. Valve stem movement.
k. Structural floor, wall and roof opening sizes and details.

2. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.

3. Prepare floor plans, elevations, and details to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.

4. Prepare reflected ceiling plans to coordinate and integrate installations, air distribution devices, light fixtures, communication systems components, and other ceiling-mounted items.

B. This Contractor shall be responsible for coordination of all items that will affect the installation of the work of this Division. This coordination shall include, but not be limited to: voltage, ampacity, capacity, electrical and piping connections, space requirements, sequence of construction, building requirements and special conditions.

C. By submitting coordination drawings on the project, this Contractor is indicating that all necessary coordination has been completed and that the systems, products and equipment submitted can be installed in the building and will operate as specified and intended, in full coordination with all other Contractors and Subcontractors.

1.15 RECORD DOCUMENTS

A. Prepare Record Documents in accordance with the requirements of Division 00 and Division 01, in addition to the requirements specified in Division 23.

B. The Contractor shall maintain a separate set of clearly and legibly marked Record Drawings on the job site to record all changes and modifications, including, but not limited to the following: work details, alterations to meet site conditions, and changes made by "Change Order" notices. Mark the drawings with colored pencil(s). These shall be available for review by the Owner, Architect or Engineer during the entire construction stage.

C. The Record Drawings shall be updated concurrently as construction progresses, and in no case less frequently than a daily basis. They shall indicate accurate dimensions for all buried or concealed work, precise locations of all concealed pipe or duct, locations of all concealed valves, controls and devices and any deviations from the work shown on the Construction Documents. All dimensions shall include at least two dimensions to permanent structure points.

D. Record Drawings shall indicate, at a minimum, the following installed conditions:

1. Duct mains and branches, size and location, for both exterior and interior; locations of dampers, fire dampers, duct access panels, and other control devices; filters, fuel fired heaters, fan coils, condensing units, and roof-top A/C units requiring periodic maintenance or repair.

2. Mains and branches of piping systems, with valves and control devices located and numbered, concealed unions located, and with items requiring maintenance located (i.e., traps, strainers, expansion compensators, tanks, etc.). Valve location diagrams, complete with valve tag chart. Indicate actual inverts and horizontal locations of underground piping.

3. Equipment locations (exposed and concealed), dimensioned from prominent building lines.

5. Contract Modifications, actual equipment and materials installed.

E. Engage the services of a Land Surveyor or Professional Engineer registered in the state in which the project is located as specified herein to record the locations and invert elevations of underground installations.

F. If the Contractor does not keep an accurate set of Record Drawings, the pay request may be altered or delayed at the request of the Architect. Delivery of Record Documents is a condition of
final acceptance. Record Drawings shall be furnished in addition to Shop Drawings.

G. The Contractor shall submit an electronic copy of the record documents in PDF format and one (1) full size set of Record Drawing prints to the Architect or Engineer for review prior to scheduling the final inspection at the completion of the work. The drawings shall have the name(s) and seal(s) of the Engineer(s) removed or blanked out and shall be clearly marked and signed on each sheet as follows:

CERTIFIED RECORD DRAWINGS

DATE:

(NAME OF GENERAL CONTRACTOR)

BY: ______________________________

(SIGNATURE)

(NAME OF SUBCONTRACTOR)

BY: ______________________________

(SIGNATURE)

1.16 OPERATING AND MAINTENANCE MANUALS

A. Prepare operating and maintenance manuals in accordance with Division 00 and Division 01 and, in addition to the requirements specified in those Divisions, include the following information for equipment items:

1. Description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of replacement parts.
 a. Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.
 b. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.
 c. Servicing instructions and lubrication charts and schedules.

1.17 CERTIFICATIONS AND TEST REPORTS

A. Submit a detailed schedule for completion and testing of each system indicating scheduled dates for completion of system installation and outlining tests to be performed and scheduled date for each test. This detailed completion and test schedule shall be submitted at least 90 days before the projected substantial completion date.

B. Test result reporting forms shall be submitted for review no later than the date of the detailed schedule.

C. Submit 4 copies of all certifications and test reports to the Architect or Engineer for review adequately in advance of substantial completion of the Work to allow for remedial action as required to correct deficiencies discovered in equipment and systems.

D. Certifications and test reports to be submitted shall include, but not be limited to, those items outlined in Section 23 02 00.

1.18 OPERATING AND MAINTENANCE MANUALS
A. Prepare Operations and Maintenance manuals in accordance with the requirements of Division 01 and Division 23. In addition to the requirements of other Sections, this shall include the following information for equipment items:

1. Identifying names, name tags designations and locations for all equipment.
2. Valve tag lists with valve number, type, color coding, location and function.
3. Reviewed Shop Drawing submittals with exceptions noted compliance letter.
4. Fabrication drawings.
5. Equipment and device bulletins and data sheets clearly highlighted to show equipment installed on the project and including performance curves and data as applicable, i.e., description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and model numbers of replacement parts.
6. Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.
7. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.
8. Servicing instructions and lubrication charts and schedules.
9. Equipment and motor name plate data.
10. Wiring diagrams.
11. Exploded parts views and parts lists for all equipment and devices.
12. Color coding charts for all painted equipment and conduit.
13. Location and listing of all spare parts and special keys and tools furnished to the Owner.
14. Furnish recommended lubrication schedule for all required lubrication points with listing of type and approximate amount of lubricant required.

B. Coordinate with Division 01 for Operations and Maintenance manual requirements. Unless noted otherwise, bind together in “D ring” style three-ring binders (National model no. 79-083 or equivalent). Binders shall be large enough to allow ¼” of spare capacity. Include three (3) sets with all approved Shop Drawing submittals, fabrication drawings, bulletins, maintenance instructions, operating instructions and parts exploded views and lists for each and every piece of equipment furnished under this Specification. All sections shall be typed and indexed into sections with tabbed insertable dividers, labeled for easy reference. Utilize the individual specification section numbers shown in the Mechanical Specifications as an organization guideline. Bulletins containing information about equipment that is not installed on the project shall be properly marked up or stripped and reassembled. All pertinent information required by the Owner for proper operation and maintenance of equipment supplied by Division 23 shall be clearly and legibly set forth in memoranda that shall, likewise, be bound with bulletins.

C. In addition to the bound “hard-copy” Operation and Maintenance manuals referenced above, provide an identical electronic copy in searchable PDF format, with all sections bookmarked within the file for easy reference. Provide a USB flash drive with the final manual to the Owner.

D. Operating and Maintenance Manuals shall be turned over to the Owner or Engineer for review a minimum of fourteen (14) working days prior to the beginning of the operator training period.

E. Operating and Maintenance Manuals which the Engineer deems incomplete, poorly organized, or otherwise unacceptable will be rejected in writing. The Contractor will subsequently be required to again turn over Operating and Maintenance Manuals, with all deficiencies corrected, until deemed acceptable by the Engineer.

1.19 OPERATOR TRAINING

A. The Contractor shall furnish the services of factory trained specialists to instruct the Owner's operating personnel. The Owner's operator training shall include a minimum of 12 hours of onsite training in three (3) shifts of four (4) hours each.

B. Before proceeding with the instruction of Owner Personnel, prepare a typed outline in triplicate, listing the subjects that will be covered in this instruction, and submit the outline for review by the Owner. At the conclusion of the instruction period, obtain the signature of each person being
instructed on each copy of the reviewed outline to signify that he has a proper understanding of the operation and maintenance of the systems and resubmit the signed outlines.

C. Refer to other Division 23 Sections for additional Operator Training requirements.

1.20 FINAL COMPLETION

A. At the completion of the Work, all equipment and systems shall be tested and faulty equipment and material shall be repaired or replaced. Refer to Sections of Division 23 for additional requirements.

B. Clean and adjust all air distribution devices and replace all air filters immediately prior to Substantial Completion.

C. Touch up and/or refinish all scratched equipment and devices immediately prior to Substantial Completion.

1.21 CONTRACTOR’S GUARANTEE

A. Use of the HVAC systems to provide temporary service during construction period will not be allowed without permission from the Owner in writing; and, if granted, shall not cause the warranty period to start, except as defined below.

B. Contractor shall guarantee to keep the entire installation in repair and perfect working order for a period of one year after the date of the Substantial Completion, and shall furnish (free of additional cost to the Owner) all materials and labor necessary to comply with the above guarantee throughout the year beginning from the date of Substantial Completion, Beneficial Occupancy by the Owner, or the Certificate of Final Payment as agreed upon by all parties.

C. This guarantee shall not include cleaning or changing filters except as required by testing, adjusting and balancing.

D. All air conditioning compressors shall have parts and labor guarantees provided by the equipment manufacturer for a period of not less than 5 years beyond the date of Substantial Completion.

E. Refer to Sections in Division 23 for additional guarantee or warranty requirements.

1.22 TRANSFER OF ELECTRONIC FILES

A. Project documents are not intended or represented to be suitable for reuse by Architect/Owner or others on extensions of this project or on any other project. Any such reuse or modification without written verification or adaptation by Engineer, as appropriate for the specific purpose intended, will be at Architect/Owner’s risk and without liability or legal exposure to Engineer or its consultants from all claims, damages, losses and expense, including attorney’s fees arising out of or resulting thereof.

B. Because data stored in electronic media format can deteriorate or be modified inadvertently, or otherwise, without authorization of the data’s creator, the party receiving the electronic files agrees that it will perform acceptance tests or procedures within sixty (60) days of receipt, after which time the receiving party shall be deemed to have accepted the data thus transferred to be acceptable. Any errors detected within the sixty (60) day acceptance period will be corrected by the party delivering the electronic files. Engineer is not responsible for maintaining documents stored in electronic media format after acceptance by the Architect/Owner.

C. When transferring documents in electronic media format, Engineer makes no representations as to the long term compatibility, usability or readability of documents resulting from the use of software application packages, operating systems, or computer hardware differing from those used by Engineer at the beginning of the Project.

D. Any reuse or modifications will be at the Contractor’s sole risk and without liability or legal exposure to Architect, Engineer or any consultant.
E. The Texas Board of Architectural Examiners (TBAE) has stated that it is in violation of Texas law for persons other than the Architect of record to revise the Architectural drawings without the Architect’s written consent.

1. It is agreed that “MEP” hard copy or computer-generated documents will not be issued to any other party except directly to the Architect/Owner. The Contract Documents are contractually copyrighted and cannot be used for any other project or purpose except as specifically indicated in AIA B-141 Standard Form of Agreement Between Architect and Owner.

2. If the client, Architect or Owner of the project requires electronic media for “record purposes”, then AutoCAD/ Revit documents will be prepared by Engineer on electronic media such as removable memory devices, flash drives or CD’s. These documents can also be submitted via file transfer protocols. AutoCAD/ Revit files will be submitted with all title block references intact to permit the end user to only view and plot the drawings. Revisions will not be permitted in this configuration.

3. At the Architect/Owner’s request, Engineer will assist the Contractor in the preparation of the submittals and prepare one copy of AutoCAD/ Revit files on electronic media or submit through file transfer protocols. The electronic media will be prepared with all indicia of documents ownership removed. The electronic media will be prepared in a “.rvt” or “.dwg” format to permit the end user to revise the drawings.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Provide materials and equipment manufactured by a domestic United States manufacturer and assembled in the United States for all local and Federal Government projects. These materials and equipment shall comply with “Buy American Act.”

B. Access Doors: Provide access doors as required for access to equipment, valves, controls, cleanouts and other apparatus where concealed. Access doors shall have concealed hinges and screw driver cam locks.

C. All access doors located in wet areas such as restrooms, locker rooms, shower rooms, kitchen and any other wet areas shall be constructed of stainless steel.

D. Access Doors: shall be as follows:

1. Plaster Surfaces: Milcor Style K.
2. Ceramic Tile Surface: Milcor Style M.
3. Drywall Surfaces: Milcor Style DW.
4. Install doors only in locations approved by the Architect.

2.2 EQUIPMENT PADS

A. Provide 6-inch-high concrete pads for indoor floor mounted equipment. Pads shall conform to the shape of the equipment with a minimum extension of 6 inch beyond the equipment on all sides. Top and sides of pads shall be troweled to a smooth finish, equivalent to the floor. External corners shall be bullnosed to a 3/4” radius, unless shown otherwise.

B. Provide 6-inch-high concrete pads for all exterior mounted equipment. Pads shall conform to the shape of the equipment with a minimum extension of 6 inch beyond the equipment on all sides. Provide a 4-foot monolithic extension to the pad in front of the equipment for service when mounted on a non-finished area (i.e. landscape, gravel, clay, etc.) Top and sides of pads shall be troweled to a smooth finish. External corners shall be bullnosed to a 3/4” radius, unless shown otherwise.

PART 3 - EXECUTION

3.1 ROUGH-IN
A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected via reviewed submittals.

B. Refer to equipment specifications in Divisions 2 through 48 for additional rough-in requirements.

3.2 MECHANICAL INSTALLATIONS

A. General: Sequence, coordinate, and integrate the various elements of mechanical systems, materials, and equipment. Comply with the following requirements:

1. Coordinate mechanical systems, equipment, and materials installation with other building components.
2. Verify all dimensions by field measurements.
3. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for mechanical installations.
4. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
5. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building.
6. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.
7. Coordinate connection of mechanical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.
8. Install systems, materials, and equipment to conform with architectural action markings on submittal, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, resolve conflicts and submit proposed solution to the Architect for review.
9. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished spaces.
10. Install mechanical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as possible, connect equipment for ease of disconnecting, with minimum of interference with other installations. Extend grease fittings to an accessible location and label.
11. Install access doors where units are concealed behind finished surfaces. Refer to paragraph 2.1 in this section and architect for access doors specifications and location.
12. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.
13. Provide roof curbs for all roof mounted equipment. Coordinate with roof construction for pitched roof. Provide roof curbs which match the roof slope and provides a level top for equipment installation. Refer to Architectural drawings and details.
14. The equipment to be furnished under these Specifications shall be essentially the standard product of the manufacturer. Where two or more units of the same class of equipment are required, these units shall be products of a single manufacturer; however, the component parts of the system need not be the product of the same manufacturer.
15. The Architectural and Structural features of the building and the space limitations shall be considered in selection of all equipment. No equipment shall be furnished which will not suit the arrangement and space limitations indicated.
16. Lubrication: Prior to start-up, check and properly lubricate all bearings as recommended by the manufacturer.
17. Where the word "Concealed" is used in these Specifications in connection with insulating, painting, piping, ducts, etc., it shall be understood to mean hidden from sight as in chases, furred spaces or suspended ceilings. "Exposed" shall be understood to mean the opposite of concealed.
18. Identification of Mechanical Equipment:
 a. Mechanical equipment shall be identified by means of nameplates permanently attached to the equipment. Nameplates shall be engraved laminated plastic or etched metal. Submittals shall include dimensions and lettering format for
attachment shall be with escutcheon pins, self-tapping screws, or machine screws.

b. Tags shall be attached to all valves, including control valves, with nonferrous chain. Tags shall be brass and at least 1-1/2 inches in diameter. Nameplate and tag symbols shall correspond to the identification symbols on the temperature control submittal and the "as-built" drawings.

19. Provide construction filters for all air handling units, fan coil unit, VAV boxes, and all other air handling equipment during the entire construction period.

20. Provide temporary construction strains for all strainers in the hydronic systems during the initial flushing of the systems.

3.3 CUTTING AND PATCHING

A. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.

B. Perform cutting, fitting, and patching of mechanical equipment and materials required to:

1. Uncover Work to provide for installation of ill-timed Work.
2. Remove and replace defective Work.
3. Remove and replace Work not conforming to requirements of the Contract Documents.
4. Remove samples of installed Work as specified for testing.
5. Install equipment and materials in existing structures.
6. Upon written instructions from the Engineer, uncover and restore Work to provide for Engineer/Owner's observation of concealed Work, without additional cost to the Owner.
7. Patch existing finished surfaces and building components using new materials matching existing materials and experienced Installers. Patch finished surfaces and building components using new materials specified for the original installation and experienced Installers; refer to the materials and methods required for the surface and building components being patched; Refer to Paragraph 1.11 I for definition of "Installer."

C. Cut, remove and legally dispose of selected mechanical equipment, components, and materials as indicated, including but not limited to removal of mechanical piping, mechanical ducts and HVAC units, and other mechanical items made obsolete by the new Work.

D. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

E. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.

3.4 WORK SEQUENCE, TIMING, COORDINATION WITH OWNER, ARCHITECT AND ENGINEER

A. The Owner will cooperate with the Contractor, however, the following provisions must be observed:

1. A meeting will be held at the project site, prior to any construction, between the Owner's Representative, the General Contractor, the Sub-Contractors and the Engineer to discuss Contractor's employee parking space, access, storage of equipment or materials, and use of the Owner's facilities or utilities. The Owner's decisions regarding such matters shall be final.
2. During the construction of this project, normal facility activities will continue in existing buildings until renovated areas are completed. Plumbing, fire protection, lighting, electrical, communications, heating, air conditioning, and ventilation systems shall be maintained in service within the occupied spaces of the existing building.
3. Contractor shall not start-up any of the HVAC equipment unless the Owner, Architect and Engineer are signed off.
4. Start-up for major HVAC equipment such as chillers, cooling towers, variable frequency drives and hot water boilers shall be performed by a factory technician. The start-up shall include a written report signed off by Contractor, Engineer and Owner.

3.5 DEMOLITION AND WORK WITHIN EXISTING BUILDINGS
A. In the preparation of these documents every effort has been made to show the approximate locations of, and connections to, the existing piping, duct, equipment and other apparatus related to this phase of the Work. However, this Contractor shall be responsible for verifying all of the above information. This Contractor shall visit the existing site to inspect the facilities and related areas. This Contractor shall inspect and verify all details and requirements of all the Contract Documents, prior to the submission of a proposal. All discrepancies between the Contract Documents and actual job-site conditions shall be resolved by the contractor, who shall produce drawings that shall be submitted to the Architect/Engineer for review. All labor and materials required to perform the work described shall be a part of this Contract.

B. All equipment and/or systems noted on the Drawings "To Remain" shall be inspected and tested on site to certify its working condition. A written report on the condition of all equipment to remain, including a copy of the test results and recommended remedial actions and costs shall be made by this Contractor to the Architect/Engineer for review.

C. All equipment and/or systems noted on the Drawings "To Be Removed" shall be removed including, associated pipe and duct, pipe and duct hangers and/or line supports. Where duct or pipe is to be capped for future or end of line use, it shall be properly tagged with its function or service appropriately identified. Where existing equipment is to be removed or relocated and has an electric motor or connection, the Electrical Contractor shall disconnect motor or connection, remove wiring to a safe point and this Contractor shall remove or relocate motor or connection along with the equipment.

D. During construction and remodeling, portions of the Project shall remain in service. Construction equipment, material, tools, extension cords, etc., shall be arranged so as to present minimum hazard or interruption to the occupants of the building. None of the construction work shall interfere with the proper operation of the existing facility; or be so conducted as to cause harm or danger to persons on the premises. All fire exits, stairs or corridors required for proper access, circulation or exit shall remain clear of equipment, materials or debris. The General Contractor shall maintain barricades, other separations in corridors and other spaces where work is conducted.

E. Certain work during the demolition and construction phases may require overtime or night time shifts or temporary evacuation of the occupants. Coordinate and schedule all proposed down time with the Owner at least seventy-two (72) hours in advance in writing.

F. Any salvageable equipment as determined by the Owner, shall be delivered to the Owner, and placed in storage at the location of his choice. All other debris shall be removed from the site immediately.

G. Equipment, piping or other potential hazards to the occupants of the building shall not be left overnight outside of the designated working or construction area.

H. Make every effort to minimize damage to the existing building and the Owner's property. Repair, patch or replace as required any damage that occurs as a result of work at the site. Care shall be taken to minimize interference with the Owner's activities during construction and to keep construction disrupted areas to a minimum. Coordinate with the Owner and other trades in scheduling and performance of the work.

I. Include in the contract price all rerouting of existing pipe, duct, etc., and the reconnecting of the existing equipment as necessitated by field conditions to allow the installation of the new systems regardless of whether or not such rerouting, reconnecting or relocating is shown on the Drawings. Furnish all temporary pipe, duct, controls, etc., as required to maintain heating, cooling, and ventilation services for the existing areas with a minimum of interruption.

J. All existing pipe, duct, materials, equipment, controls and appurtenances not included in the remodel or alteration areas are to remain in place.

K. Pipe, duct, equipment and controls serving mechanical and other Owner's equipment, etc., which is to remain but is served by pipe, duct, equipment and controls that are disturbed by the remodeling work, shall be reconnected in such a manner as to leave this equipment in proper operating condition.
L. No portion of the fire protection systems shall be turned off, modified or changed in any way without the express knowledge and written permission of the Owner’s representative in order to protect systems that shall remain in service.

M. It is the intention of this Section of the Specifications to outline minimum requirements to furnish the Owner with a turn-key and operating system in cooperation with other trades with a minimum of disruption or downtime.

N. Refer to Architectural Demolition and/or Alteration plans for actual location of walls, ceilings, etc., being removed and/or remodeled.

END OF SECTION
SECTION 23 05 13
COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS
A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.
B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 SCOPE
A. Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for owner's use.
B. WORK SPECIFIED ELSEWHERE:
 1. Painting
 2. Automatic temperature controls
 3. Power control wiring to motors and equipment

1.3 WARRANTY
A. Warrant the Work specified herein for one year and motors for five years beginning on the date of substantial completion.

1.4 REFERENCE STANDARDS
B. NEMA MG 1 - Motors and Generators.

1.5 SUBMITTALS
A. SHOP DRAWINGS: Indicate size material, and finish. Show locations and installation procedures. Include details of joints, attachments, and clearances.
B. PRODUCT DATA: Submit schedules, charts, literature, and illustrations to indicate the performance, fabrication procedures variations, and accessories.
C. MOTOR NAMEPLATE INFORMATION: Manufacturer's name, address, utility and operating data.
D. Refer to Division One for additional information.

1.6 DELIVERY AND STORAGE
A. DELIVERY: Deliver clearly labeled, undamaged materials in the manufacturers' unopened containers.
B. TIME AND COORDINATION: Deliver materials to allow for minimum storage time at the project site. Coordinate delivery with the scheduled time of installation.
C. STORAGE: Store materials in a clean, dry location, protected from weather and abuse.
PART 2 - PRODUCTS

2.1 ELECTRIC MOTORS

A. APPROVED MANUFACTURERS: Provide motors by a single manufacturer as much as possible.
 1. Baldor
 2. Marathon
 3. Siemens-Allis
 4. General Electric
 5. U.S. Motor

B. TEMPERATURE RATING: Provide insulation as follows:
 1. CLASS B: 40 degrees C maximum.
 2. CLASS F:
 a. Between 40 degrees C and 65 degrees C maximum.
 b. Totally enclosed motors.

C. STARTING CAPABILITY: As required for service indicated five starts minimum per hour.

D. PHASES AND CURRENT: Verify electrical service compatibility with motors to be used.
 1. UP TO 3/4 HP: Provide electronically commutated brushless DC single phase motors with built-in inverter and microprocessor-based control.
 2. 1 HP AND LARGER: Provide squirrel-cage AC induction polyphase motors.
 3. Name plate voltage shall be the same as the circuit's nominal voltage, serving the motor.

E. SERVICE FACTOR: 1.15 for polyphase; 1.35 for single phase.

F. FRAMES: U-frames 1.5 hp. and larger.

G. BEARINGS: Provide sealed re-greaseable ball bearings; with top mounted Zerk lubrication fittings and bottom side drains minimum average life 100,000 hours typically, and others as follows:
 1. Design for thrust where applicable.
 2. PERMANENTLY SEALED: Where not accessible for greasing.
 3. SLEEVE-TYPE WITH OIL CUPS: Light duty fractional hp. motors or polyphase requiring minimum noise level.

H. ENCLOSURE TYPE: Provide enclosures as follows, except where otherwise indicated:
 1. CONCEALED INDOOR: ODP (Open Drip Proof).
 2. EXPOSED INDOOR: Guard Protected.
 3. OUTDOOR TYPICAL: Type II. TEFC.
 4. OUTDOOR WEATHER PROTECTED: Type I. WPI.
 5. EXPLOSION PROOF, XP: For use in hazardous locations.

I. OVERLOAD PROTECTION: Built-in sensing device for stopping motor in all phase legs and signaling where indicated for fractional horse power motors.

J. NOISE RATING: "Quiet" except where otherwise indicated.

K. EFFICIENCY: Minimum full load efficiency listed in the following table, when tested in accordance with IEEE 112, Method B, including stray load loss measure.

<table>
<thead>
<tr>
<th>NEMA MG 1 Efficiency - 1800 RPM Synchronous Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor horsepower</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>3 - 5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15 - 20</td>
</tr>
<tr>
<td>25 - 30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>100 - 125</td>
</tr>
<tr>
<td>150 - 200</td>
</tr>
</tbody>
</table>
2.2 MOTOR CONTROLLERS (STARTERS)

A. All motor controllers (for equipment furnished under Division 23) shall be furnished under Division 23 and installed under Division 26 unless otherwise noted on the plans.

1. Starters shall be provided for 3 phase motors 1 horsepower and greater.

B. Motor starters shall be furnished as follows.

1. **GENERAL:** Motor starters shall be Square D Company Class 8536 across-the-line magnetic type, full-voltage, non-reversing (FAVOR) starter. All starters shall be constructed and tested in accordance with the latest NEMA standards, sizes and horsepower. ICE sizes are not acceptable. Starters shall be mounted in a general purpose dead front, painted steel enclosure and surface-mounted. Provide size and number of poles as shown and required by equipment served. Provide two speed, two winding or two speed, single winding motor starter as required for two speed motors.

2. **CONTACTS:** Magnetic starter contacts shall be double break solid silver alloy. All contacts shall be replaceable without removing power wiring or removing starter from panel. The starter shall have straight-through wiring.

3. **OPERATING COILS:** Operating coils shall be 120 volts and shall be of molded construction. When the coil fails, the starter shall open and shall not lock in the closed position.

4. **OVERLOAD RELAYS:** Provide manual reset, trip-free Class 20 overload relays in each phase conductor in of all starters. Overload relays shall be melting alloy type with visual trip indication. All 3 phase and single phase starters shall have one overload relay in each underground conductor. Relay shall not be field adjustable from manual to automatic reset. Provide 6 overload relays for two speed motor starters.

5. **PILOT LIGHTS:** Provide a red running pilot light for all motor starters. Pilot lights shall be mounted in the starter enclosure cover. Pilot lights shall be operated from an interlock on the motor starter and shall not be wired across the operating coil.

6. **CONTROLS:** Provide starters with HAND-OFF-AUTOMATIC switches. Coordinate additional motor starter controls with the requirements of Division 23. Motor starter controls shall be mounted in the starter enclosure cover.

7. **CONTROL POWER TRANSFORMER:** Provide a single-phase 480 volt control power transformer with each starter for 120 volt control power. Connect the primary side to the line side of the motor starter. The primary side shall be protected by a fuse for each conductor. The secondary side shall have one leg fused and one leg grounded. Arrange transformer terminals so that wiring to terminals will not be located above the transformer.

8. **AUXILIARY CONTACTS:** Each starter shall have one normally open and one normally closed convertible auxiliary contact in addition to the number of contacts required for the "holding interlock", remote monitoring, and control wiring. In addition, it shall be possible to field-install three more additional auxiliary contacts without removing existing wiring or removing the starter from its enclosure.

9. **UNIT WIRING:** Unit shall be completely pre-wired to terminals to eliminate any interior field wiring except for line and load power wiring and HVAC control wiring.

10. **ENCLOSURES:** All motor starter enclosures shall be NEMA 1, general purpose enclosures or NEMA-3R if mounted exposed to high moisture conditions. Provide NEMA...
11. POWER MONITOR: Provide a square "D" 8430 MPS phase failure and under-voltage relay, base and wiring required for starters serving all 3 phase motors. Set the under-voltage setting according to minimum voltage required for the motor to operate within its range.

C. APPROVED MANUFACTURERS: Controller numbers are based on first named manufacturer. Provide one of the following manufacturer's.

1. Square D.

2.3 COMBINATION MOTOR STARTERS

A. GENERAL: Combination motor starters shall consist of a magnetic starter and a fusible or non-fusible disconnect switch in a dead front, painted steel NEMA 1 enclosure unless otherwise noted and shall be surface-mounted. Size and number of poles shall as shown and required by equipment served. Combination motor starters shall be as specified for motor starters in Paragraph 2.02-B, except as modified herein.

B. DISCONNECT SWITCH: Disconnect switches shall be as specified in Section 26 28 16.

C. APPROVED MANUFACTURERS: Controller numbers are based on first named manufacturer. Provide one of the following manufacturer's.

1. Square D.

PART 3 - EXECUTION

3.1 INSTALLATION

A. All equipment shall be installed in accordance with the manufacturers’ recommendations and printed installation instructions.

B. All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Contractors’ price shall include all items required as per manufacturers’ requirements.

C. Install in a professional manner. Any part or parts not meeting this requirement shall be replaced or rebuilt without extra expense to Owner.

D. Install rotating equipment in static and dynamic balance.

E. Provide foundations, supports, and isolators properly adjusted to allow minimum vibration transmission within the building.

F. Correct objectionable noise or vibration transmission in order to operate equipment satisfactorily as determined by the Engineer.

END OF SECTION
SECTION 23 05 16
EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 WORK INCLUDED

A. Flexible pipe connections.

B. Expansion joints and compensators

C. Pipe loops, offsets, and swing joints.

1.3 RELATED WORK

A. Section 23 05 29 - Hangers and Supports for Piping and Equipment - HVAC

B. Section 23 21 13 - Above Ground Hydronic Piping

C. Section 23 22 13 - Steam and Condensate Heating Piping

D. Section 23 23 00 - Refrigerant Piping

1.4 PERFORMANCE REQUIREMENTS

A. Provide structural work and equipment required to control expansion and contraction of piping. Verify that anchors, guides, and expansion joints provided, adequately protect system.

B. Expansion Calculations:

1. Installation Temperature: 50 degrees F (10 degrees C).
3. Domestic Hot Water: 140 degrees F (60 degrees C).
4. Safety Factor: 30 percent.

C. Pipe sizes indicated are to establish a minimum quality of compensator. Refer to manufacturer’s literature for model series for different pipe sizes.

1.5 SUBMITTALS

A. Submit shop drawings under provisions of Division One.

B. Product Data:

1. Flexible Pipe Connectors: Indicate maximum temperature and pressure rating, face-to-face length, live length, hose wall thickness, hose convolutions per foot (meter) and per assembly, fundamental frequency of assembly, braid structure, and total number of wires in braid.

2. Expansion Joints: Indicate maximum temperature and pressure rating, and maximum expansion compensation.
C. Design Data: Indicate selection calculations.
D. Manufacturer’s Installation Instructions: Indicate special procedures, and external controls.

1.6 PROJECT RECORD DOCUMENTS
A. Submit under provisions of Division One.
B. Record actual locations of flexible pipe connectors, expansion joints, anchors, and guides.

1.7 OPERATION AND MAINTENANCE DATA
A. Submit under provisions of Division One.
B. Maintenance Data: Include adjustment instructions.

1.8 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing the products specified in this section with minimum five years documented experience.
B. Design expansion compensation system under direct supervision of a Professional Engineer experienced in design of this work and licensed in the state where the project is located.

1.9 DELIVERY, STORAGE, AND HANDLING
A. Deliver, store, protect and handle products under provisions of Division One.
B. Accept expansion joints on site in factory packing with shipping bars and positioning devices intact. Inspect for damage.
C. Protect equipment from exposure by leaving factory coverings, pipe end protection, and packaging in place until installation.

1.10 WARRANTY
A. Provide five year warranty under provisions of Division One.
B. Warranty: Include coverage for leak free performance of packed expansion joints.

1.11 EXTRA MATERIALS
A. Furnish under provisions of Division One.

PART 2 - PRODUCTS
2.1 FLEXIBLE PIPE CONNECTORS
A. Steel Piping (Based on 2" Pipe):
 1. Manufacturers:
 a. VMC Group, Model SS-PM or SS-FP
 b. Mercer Rubber Company, Model BSS-EM (Mason Industries)
 2. Inner Hose: Type 321, stainless steel, corrugated metal.
 3. Exterior Sleeve: Type 304, single braided stainless steel.
 4. Pressure Rating: 350 psig WOG and 70 degrees F. For 4 inch pipe - 200 psig WOG and 70 degrees F.
5. Joint: Schedule 40 steel, threaded with male nipple and hex boss each end and union. Flanged joints for pipe sizes 2 1/2 inch and larger.
7. Maximum offset: 1/2 inch on each side of installed center line.
8. Application: Air handling unit cooling and heating coils.

B. Copper Piping (Based on 2" Pipe):

1. Manufacturers:
 a. VMC Group, Model BR-FS
 b. Mercer Rubber Company, Model BFF (Mason Industries)
2. Inner Hose: Corrugated Bronze
4. Pressure Rating: 250 psig WOG and 70 degrees F.
5. Joint: Threaded with male nipple and hex boss each end with union. Flanged joints for pipe sizes 2 1/2 inch and larger.
7. Maximum offset: 1/2 inch on each side of installed center line.
8. Application: Air handling unit cooling and heating coils.

2.2 EXPANSION JOINTS

A. Bellows Type (Based on 4" Pipe):

1. Manufacturers:
 a. VMC Group, Model EB
 b. Mercer Rubber Company, Model 803 or 805 (Mason Industries)
2. Body: Monel wire reinforced molded TFE teflon bellows, multiple arch.
3. Pressure Rating: 70 psig WSP and 250 degrees F (66 degrees C).
4. Maximum Compression: 1 inch.
5. Maximum Extension: 1 inch.
8. Size: Use pipe sized units.
9. Accessories: Control rod limit bolts.
10. Application: Steel piping 8 inch and under.

2.3 ACCESSORIES

A. Pipe Alignment Guides to Direct Axial Movement:

1. Manufacturers:
 a. Metraflex, Style II
2. Two piece welded steel with shop paint, and bolted to fit standard pipe, frame with four mounting holes, clearance for minimum 1 inch thick insulation, minimum 3 inch travel.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer’s instructions.
B. Construct spool pieces to exact size of flexible connection for future insertion.
C. Install flexible pipe connectors on pipes connected to equipment supported by vibration isolation. Provided line size flexible connectors.
D. Install flexible connectors at right angles to displacement. Install one end immediately adjacent to isolated equipment and anchor other end. Install in horizontal plane unless indicated otherwise.
E. Provide miscellaneous metals to rigidly anchor pipe to building structure. Provide pipe guides so that movement takes place along axis of pipe only. Erect piping such that strain and weight is not on cast connections or apparatus.

F. Provide support and equipment required to control expansion and contraction of piping. Provide loops, pipe offsets, and swing joints, or expansion joints where required.

3.2 MANUFACTURER’S FIELD SERVICES

A. Prepare and start systems under provisions of Division One.

B. Provide inspection services by flexible pipe manufacturer’s representative for final installing and certify installation is in accordance with manufacturer’s recommendations and connectors are performing satisfactorily.

END OF SECTION
SECTION 23 05 26

VARIABLE FREQUENCY MOTOR SPEED CONTROL FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. Section 1.01 A in Section 23 05 13
B. Section 1.01 B in Section 23 05 13
C. Furnish and install a complete adjustable frequency motor speed control for the following items:
 1. Chilled water pumps

1.2 RELATED SECTIONS

A. Section 23 02 00 - Basic Materials and Methods for HVAC
B. Section 23 05 13 - Common Motor Requirements for HVAC Equipment
C. Section 23 05 48 - Vibration and Seismic Controls for HVAC Piping and Equipment
D. Section 23 05 93 - Testing, Adjusting, And Balancing
E. Section 23 09 63 - Energy Management and Control System (EMCS)
F. Section 23 21 23 - Hydronic Pumps
G. Section 23 73 13 - Modular Indoor Central Station Air Handling Units

1.3 REFERENCES

C. NFPA 70 - National Electrical Code.
D. UL 508 - Industrial Control Equipment.

1.4 SUBMITTALS

A. Submit shop drawings and product data under provisions of Division One.
B. Certified noise data shall be submitted by drive manufacturer. Noise generated by variable frequency motor speed control drive shall not exceed preferred “RC” as listed in 2019 ASHRAE (HVACA), Chapter 49 Noise and Vibration Control, Table 2 Criteria for Acceptable HVAC Noise in Unoccupied Rooms.

1.5 WARRANTY

A. Warranty shall be 24 months from the date of certified start-up, not to exceed 30 months from the date of shipment. The warranty shall include all parts, labor, travel time and expenses. There shall be 365/24 support available via a toll-free phone number.

1.6 DELIVERY, STORAGE AND HANDLING
A. Equipment shall be stored and handled per manufacturer’s instructions.

1.7 OPERATIONS PERSONNEL TRAINING

A. Provide a training session for the owner’s operations personnel. Training session shall be performed by a qualified person who is knowledgeable in the subject system/equipment. Submit a training agenda two (2) weeks prior to the proposed training session for review and approval. Training session shall include at the minimum:

1. Purpose of equipment.
2. Principle of how the equipment works.
3. Important parts and assemblies.
4. How the equipment achieves its purpose and necessary operating conditions.
5. Most likely failure modes, causes and corrections.
6. On site demonstration.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. ABB
B. Yaskawa/Magnetek
C. Graham

2.2 ADJUSTABLE FREQUENCY INVERTER

A. The AFD package as specified herein shall be enclosed in a NEMA 12 enclosure for interior applications, a NEMA 3R enclosure for exterior locations and a NEMA 4X enclosure where located in a cooling tower yard or within 20 feet from cooling tower. All enclosures shall be completely assembled and tested by the manufacturer in an ISO 9001 facility. The AFD shall operate from a line of +30% over nominal and the under-voltage trip level shall be 35% under the nominal voltage as a minimum.

B. The fused input shall utilize fast acting current limiting type per manufacturer recommendations.

C. The variable frequency power and logic unit shall be completely solid state. The unit shall transform 480 Volt or 208 Volt (as indicated on plans), 3 phase, 60 hertz input power into frequency and voltage controlled, 3 phase output power suitable to provide positive speed and torque control to the fan motor. The speed control shall be step-less throughout the speed range under variable torque load on a continuous basis. The adjustable frequency control shall be of a pulse width modulated type utilizing a full wave diode bridge rectifier; and shall have a power factor of 0.95 or better at all motor loads.

D. All AFD’s shall have the same customer interface, including a backlit LCD two-line digital display, and keypad, regardless of horsepower rating. The keypad is to be used for local control, for setting all parameters, and for stepping through the displays and menus. The keypad shall be removable, capable of remote mounting, and shall have its own non-volatile memory. The keypad shall allow for uploading and downloading of parameter settings as an aid for the start-up of multiple AFD’s. The keypad shall include Hand-Off-Auto membrane selections. When in “Hand”, the AFD will be started and the speed will be controlled from the up/down arrows. When in “Off”, the AFD will be stopped. When in “Auto”, the AFD will start via an external contact closure and the AFD speed will be controlled via an external speed reference.

E. The adjustable frequency inverter shall conduct no radio frequency interference (RFI) back to the input power line.

F. The AFD shall have an integral 5% impedance line reactor to reduce the harmonics to the power line and to add protection from AC line transients. The inverter/reactor shall be a single wiring point.
2.3 SELF PROTECTION

A. The following features for self-protection shall be included:

1. The overload rating of the drive shall be 110% of its normal duty current rating for 1 minute every 10 minutes. The minimum FLA rating shall meet or exceed the values in the NFPA 70 - Table 430-150 for 4-pole motors.
2. Limit the output current in under 50 microseconds due to phase to phase short circuits or severe overload conditions.
3. Protect the inverter due to non-momentary power or phase loss. The undervoltage trip shall activate automatically when the line voltage drops 15% below rated input voltage.
4. Protect the inverter due to voltage levels in excess of its rating. The overvoltage trip shall activate automatically when the DC bus in the controller exceeds 1000 VDC.
5. Protect the inverter from elevated temperatures in excess of its rating. An indicating light that begins flashing within 10 degrees C of the trip shall be provided to alert the operator to the increasing temperature condition. When the over temperature trip point is reached, this light shall be continuously illuminated.
6. The inverter shall be equipped such that a trip condition resulting from overcurrent, undervoltage, overvoltage or overtemperature shall be automatically reset, and the inverter shall automatically restart upon removal, or correction of the faulty condition.
7. Status lights for indication of conditions described above shall be provided. A SPDT contact for remote indication shall be provided. Additionally, status lights to show power on, zero speed, and drive enabled shall be provided. All status lights shall be self-contained in the front panel of the unit and shall be duplicated for ease of troubleshooting on the inside of the unit.
8. Current and voltage signals shall be isolated from logic circuitry.
9. Drive logic shall be microprocessor based.
10. In the event of a sustained power loss, the control shall shut down safely without component failure. Upon return of power, the system shall automatically return to normal operation if the start is in the “On” condition.
11. In the event of a momentary power loss, the control shall be shut down safely without component failure. Upon return of power, the system shall automatically return to normal operation (if the start is in the “On” position) being able to restart into a rotating motor regaining positive speed control without shutdown or component failure.
12. In the event of a phase to phase short circuit, the control shall shut down safely without component failure.
13. In the event that an input power contactor is opened or closed while the control is activated, no damage shall result.
14. To facilitate startup and troubleshooting, the control shall operate without a motor or any other equipment connected to the inverter output.

2.4 ELECTRICAL CONSTANT SPEED BYPASS

A. Provide all components and circuitry necessary to provide manual full bypass of the inverter. The bypass package shall be mounted in a cabinet common with the inverter and shall be constructed in such a manner that the inverter can be removed for repair while still operating the motor in the “bypass” mode. Fast-acting semi-conductor with a fuse block shall be provided to isolate the drive for service. Bypass designs that have no such fuses must have a lockable disconnect that isolates the drive while running in bypass mode. The Contractor device shall be NEC approved. A common start/stop signal shall be used for both the variable frequency drive mode and bypass mode. Manual bypass shall contain the following:

1. Two contactors mechanically interlocked via a three position through the door selector switch or keypad to provide the following controls:
 a. “Inverter” mode connects the motor to the output of the inverter.
 b. “Bypass” mode connects the motor to the input sine wave power. Transfer must occur with input disconnect open. Motor is protected via electronic overload.
 c. “Off” mode disconnects motor from all input power.
 d. A molded case circuit breaker with door interlocked handle (lock out type) that interrupts input power to both the bypass circuitry and the drive.
e. Customer Interlock Terminal Strip - provide a separate terminal strip for connection of freeze, fire, smoke contacts, and external start command. All external safety interlocks shall remain fully functional whether the system is Hand, Auto, or Bypass mode. The remote start/stop contact shall operate in AFD and bypass modes.

f. An electronic overload select able for class 20 or 30 shall provide protection of the motor in Bypass mode.

2. The following indicating lights (LED type) shall be provided. A test mode or push to test feature shall be provided.
 a. Power on
 b. External fault
 c. Drive mode selected
 d. Bypass mode selected
 e. Drive running
 f. Bypass running
 g. Drive fault
 h. Bypass fault
 i. Bypass-H-O-A mode
 j. Automatic transfer to bypass selected

3. The following relay (form C) outputs from the bypass shall be provided:
 a. System started
 b. System running
 c. Bypass override enabled
 d. Drive fault
 e. Bypass fault (motor overload or underload (broken belt))
 f. Bypass H-O-A position

4. The AFD shall include a “run permissive circuit” that will provide a normally open contact any time a run command is provided (local or remote start command in AFD or bypass mode). The AFD system (AFD or bypass) shall not operate the motor until it receives a dry contact closure from a damper or valve end-switch). When the AFD systems safety interlock (fire detector, freeze stat, high static pressure switch, etc.) opens, the motor shall coast to a stop and the run permissive contact shall open, closing the damper or valve.

5. There shall be an internal switch to select manual or automatic bypass.

6. There shall be an adjustable current sensing circuit for the bypass to provide loss of load indication when in the bypass mode.

7. The bypass mode must include an undervoltage and phase loss relay to protect the motor from single phase power and undervoltage conditions.
 a. Bypass shall be UL listed.
 b. Bypass shall carry a UL 508 label.

2.5 FEATURES AND SPECIFICATIONS

A. Output frequency shall neither vary with load nor with any input frequency variations. Output frequency shall not vary within +/-10% input voltage changes. Output frequency shall not vary with temperature changes within the ambient specification.

B. No auxiliary equipment shall be required. The output frequency shall be adjusted in proportion to 4-20 mA signal.

C. A 0 to 10 Volt DC signal shall be provided for remote indication. This 0 to 10 Volt DC signal shall vary in direct proportion to the controller speed.

D. The controller shall be started or stopped by a contact closure or through serial communications.

E. A single pole, double throw contact shall be provided for remote indication. Contact will change state when any trip condition has occurred. (contact rated for 12-250 VAC-2 AMPS).

F. A second single pole, double throw contact shall be provided for remote indication. Contact will state when the VFD receives a run command (contact rated for 12-250 VAC-24 AMPS).

G. PID Setpoint controller shall be standard in the drive, allowing a pressure or flow signal to be connected to the AFD, using the microprocessor in the AFD for the closed loop control. The AFD
shall have 250 ma of 24 VDC auxiliary power and be capable of loop powering a transmitter supplied by others. The PID setpoint shall be adjustable from the AFD keypad, analog inputs, or over the communications bus.

H. Unit to operate from a 4 to 20 mA input signal and shall have hand-off-auto switch and door mounted potentiometer controls for manual speed selection.

I. Acceleration and deceleration times shall be adjustable from 30 to 300 seconds.

J. The drive shall have the ability to invert the speed signal input, as well as having offset and gain controls for speed signal conditioning.

K. Minimum and maximum speeds shall be adjustable in automatic and manual modes.

L. Hazard inputs shall be provided, capable of up to two inputs (fire, freeze). These shall each be capable of safely shutting down the inverter and illuminating a front panel hazard light depicting that a hazard condition turned the inverter off.

M. The inverter shall be a starter, containing a door interlocked input disconnect switch and manual reset motor electronic overloads, with accessible reset on front door, when a bypass is not specified.

N. Solid state ground fault interrupt circuit.

O. The LED display shall monitor and display four parameters on a single display (i.e. frequency command, output frequency, output current, and torque).

P. A N.O. auxiliary run-time contact shall be provided for control signaling to auxiliary equipment. Contact shall close when the pump is brought on line and open when the pump is taken off line. Contact shall be rated 20 amps at 120 volts.

Q. Inverter shall be UL listed.

R. Certified factory start-up shall be provided for each drive by a factory authorized service center. A certified start-up form shall be filled out for each drive with a copy provided to the Owner, and a copy kept on file at the manufacturer.

S. Factory trained application engineering and service personnel that are thoroughly familiar with the AFD products offered shall be locally available at both the specifying and installation locations. A 24/365 technical support line shall be available on a toll-free line.

T. A computer based training CD or 8-hour professionally generated video (VCR format) shall be provided to the Owner at the time of Substantial Completion. The training shall include installation, programming and operation of the AFD, bypass and serial communication.

U. Provide a motor end surge control voltage suppressive filter if the VFD manufacturer cannot limit their voltage surges to under 1000 volt at 100 feet.

V. Provide a motor acoustic noise reduction filter capable of approximately 12 dBA attenuation, if the VFD raises the dBA level above 3 dBA at a distance of 3 feet from the motor.

W. Provide each unit with a 3% reactor which is mounted on both the positive and negative DC bus. The reactor shall be a single wiring point and mounted internally to the drive.

X. Adjustable frequency inverters shall have native BACnet protocol for integration with EMCS. If the inverter does not have native BACnet protocol, a BACnet interface card shall be provided.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Install units in accordance with manufacturer’s published installation instructions. Variable frequency speed control shall be located so that wiring to motor does not exceed 100 feet.

END OF SECTION
SECTION 23 05 29
HANGERS AND SUPPORTS FOR PIPING AND EQUIPMENT - HVAC

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 WORK INCLUDED

A. Pipe, and equipment hangers, supports and associated anchors.

B. Sleeves and seals.

C. Flashing and sealing equipment and pipe stacks.

1.3 RELATED WORK

A. Section 23 05 48 - Vibration and Seismic Controls for HVAC Piping and Equipment

B. Section 23 07 16 - HVAC Equipment Insulation

C. Section 23 07 19 - HVAC Piping Insulation

D. Section 23 21 13 - Above Ground Hydronic Piping

E. Section 23 21 16 - Underground Hydronic Piping

1.4 REFERENCES

A. ASME B31.1 - Power Piping.

B. ASME B31.9 - Building Services Piping.

1.5 QUALITY ASSURANCE

B. Hangers and Supports for HVAC Piping: In conformance with MSS SP-58.

1.6 SUBMITTALS

A. Submit shop drawings and product data under provisions of Division One.

B. Indicate hanger and support framing and attachment methods.

PART 2 - PRODUCTS

2.1 PIPE HANGERS AND SUPPORTS

Hangers and Supports for Piping and Equipment - HVAC
A. Hangers for Pipes Sizes 1/2 to 1-1/2 Inch: Malleable iron, adjustable swivel, split ring.
B. Hangers for Pipes Sizes 2 to 4 Inch: Carbon steel, adjustable clevis.
C. Hangers for Pipes Sizes 6 Inches and Over: Adjustable steel yoke, cast iron roller, double hanger.
D. Multiple or Trapeze Hangers: Steel channels with welded spacers, pre-formed manufactured saddles and hanger rods; cast iron roller and stand for pipe sizes 6 inches and over.
E. Wall Support for Pipe Sizes to 3 Inches: Cast iron hook.
F. Wall Support for Pipe Sizes 4 Inches and over: adjustable steel yoke and cast iron roller.
G. Vertical Support: Steel riser clamp.
H. Floor Support for Pipe Sizes to 4 Inches: Cast iron adjustable pipe saddle, locknut nipple, floor flange, and concrete pier or steel support.
I. Floor Support for Pipe Sizes 6 Inches and Over: Adjustable cast iron roller and stand, steel screws, and concrete pier or steel support.
J. Roof Pipe Supports and Hangers: Galvanized Steel Channel System as manufactured by Portable Pipe Hangers, Inc. or approved equal.
 1. For pipes 2-1/2” and smaller - Type PP10 with roller
 2. For pipes 3” through 8” - Type PS
 3. For multiple pipes - Type PSE - Custom
L. Shields for Vertical Copper Pipe Risers: Sheet lead.
M. Pipe Rough-In Supports in Walls/Chases: Provide preformed plastic pipe supports, Sioux Chief “Pipe Titan” or equal.

2.2 HANGER RODS
A. Galvanized Hanger Rods: Threaded both ends, threaded one end, or continuous threaded.

2.3 INSERTS
A. Inserts: Malleable iron case with galvanized steel shell and expander plug for threaded connection with lateral adjustment, top slot for reinforcing rods, lugs for attaching to forms; size inserts to suit threaded hanger rods.

2.4 FLASHING
A. Metal Flashing: 20 gage galvanized steel.
B. Lead Flashing: 4 lb. /sq. ft. sheet lead for waterproofing; 1 lb. /sq. ft. sheet lead for soundproofing.
C. Caps: Steel, 20 gage minimum; 16 gage at fire resistant elements.
D. Coordinate with roofing contractor/Architect for type of flashing on metal roofs.

2.5 SLEEVES
A. Sleeves for Pipes through Non-fire Rated Floors: Form with 18 gage galvanized steel, tack welded to form a uniform sleeve.

B. Sleeves for Pipes through Non-fire Rated Beams, Walls, Footings, and Potentially Wet Floors: Form with steel pipe, Schedule 40.

C. Sleeves for Pipes through Fire Rated and Fire Resistant Floors and Walls, and Fireproofing: Prefabricated fire rated steel sleeves including seals, UL listed.

D. Sleeves for Round Ductwork: Form with galvanized steel.

E. Sleeves for Rectangular Ductwork: Form with galvanized steel.

F. Fire Stopping Insulation: Glass fiber type, non-combustible, UL listed.

G. Caulk: Paintable 25-year acrylic sealant.

H. Pipe Alignment Guides: Factory fabricated, of cast semi-steel or heavy fabricated steel, consisting of bolted, two-section outer cylinder and base with two-section guiding spider that bolts tightly to pipe. Length of guides shall be as recommended by manufacturer to allow indicated travel.

2.6 FABRICATION

A. Size sleeves large enough to allow for movement due to expansion and contraction. Provide for continuous insulation wrapping.

B. Design hangers without disengagement of supported pipe.

C. Design roof supports without roof penetrations, flashing or damage to the roofing material.

2.7 FINISH

A. Exposed steel hangers, supports, and appurtenances shall be hot-dipped galvanized. Hangers and supports located in crawl spaces, pipe shafts, and suspended ceiling spaces are not considered exposed.

PART 3 - EXECUTION

3.1 INSERTS

A. Provide inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams. Coordinate with Structural Engineer for placement of inserts.

B. Provide hooked rod to concrete reinforcement section for inserts carrying pipe over 4 inches.

C. Where concrete slabs form finished ceiling, provide inserts to be flush with slab surface.

D. Where inserts are omitted, drill through concrete slab from below and provide thru-bolt with recessed square steel plate and nut recessed into and grouted flush with slab. Verify with Structural Engineer prior to start of work.

3.2 PIPE HANGERS AND SUPPORTS

A. Support horizontal piping as follows:

<table>
<thead>
<tr>
<th>PIPE SIZE (Steel Pipe)</th>
<th>MAX. HANGER SPACING</th>
<th>HANGER DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 to 1-1/4 inch</td>
<td>7'-0"</td>
<td>3/8"</td>
</tr>
</tbody>
</table>
Hangers and Supports for Piping and Equipment -

HVAC

<table>
<thead>
<tr>
<th>Diameter Range</th>
<th>Minimum Spacing</th>
<th>Clamp Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2 to 3 inch</td>
<td>10'-0"</td>
<td>3/8"</td>
</tr>
<tr>
<td>4 to 6 inch</td>
<td>10'-0"</td>
<td>1/2"</td>
</tr>
<tr>
<td>8 to 10 inch</td>
<td>10'-0"</td>
<td>5/8"</td>
</tr>
<tr>
<td>12 to 14 inch</td>
<td>10'-0"</td>
<td>3/4"</td>
</tr>
<tr>
<td>15 inch and over</td>
<td>10'-0"</td>
<td>7/8"</td>
</tr>
<tr>
<td>(Copper Pipe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 to 1-1/4 inch</td>
<td>5'-0"</td>
<td>3/8"</td>
</tr>
<tr>
<td>1-1/2 to 2-1/2 inch</td>
<td>8'-0"</td>
<td>3/8"</td>
</tr>
<tr>
<td>3 to 4 inch</td>
<td>10'-0"</td>
<td>3/8"</td>
</tr>
<tr>
<td>6 to 8 inch</td>
<td>10'-0"</td>
<td>1/2"</td>
</tr>
<tr>
<td>(Cast Iron Pipe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 to 3 inch</td>
<td>5'-0"</td>
<td>3/8"</td>
</tr>
<tr>
<td>4 to 6 inch</td>
<td>10'-0"</td>
<td>1/2"</td>
</tr>
<tr>
<td>8 to 10 inch</td>
<td>10'-0"</td>
<td>5/8"</td>
</tr>
<tr>
<td>12 to 14 inch</td>
<td>10'-0"</td>
<td>3/4"</td>
</tr>
<tr>
<td>15 inch and over</td>
<td>10'-0"</td>
<td>7/8"</td>
</tr>
<tr>
<td>(PVC Pipe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/2 to 4 inch</td>
<td>4'-0"</td>
<td>3/8"</td>
</tr>
<tr>
<td>6 to 8 inch</td>
<td>4'-0"</td>
<td>1/2"</td>
</tr>
<tr>
<td>10 inch and over</td>
<td>4'-0"</td>
<td>5/8"</td>
</tr>
</tbody>
</table>

B. Install hangers to provide minimum 1/2 inch space between finished covering and adjacent work.
C. Place a hanger within 12 inches of each horizontal elbow, and at the vertical to horizontal transition.
D. Use hangers with 1-1/2 inch minimum vertical adjustment.
E. Support horizontal cast iron pipe adjacent to each hub, with 5 feet maximum spacing between hangers.
F. Support vertical piping at every floor.
G. For vertical shaft or chase applications where floor slab supported riser clamps cannot be provided to keep the pipe in alignment and to support the weight of the pipe and its contents, ensure to provide suitable fasteners, hardware, braces, unistrut, structural steel members, and appurtenances required to accommodate the pipe installation. Coordinate all such work with the project structural engineer to ensure that necessary members and attachment points are provided accordingly to bear the weight of the functioning piping.
H. Where several pipes can be installed in parallel and at same elevation, provide multiple or trapeze hangers.
I. Support riser piping independently of connected horizontal piping.
J. Install hangers with nut at base and above hanger; tighten upper nut to hanger after final installation adjustments.
K. Portable pipe hanger systems shall be installed per manufacturer’s instructions.
L. Distances between supports are maximum distance. Supports shall be provided to carry the pipe/equipment load.

3.3 INSULATED PIPING

A. Clamps: Attach galvanized clamps, including spacers (if any), to piping with clamps projecting through insulation; do not exceed pipe stresses allowed by ASME B31.9.
B. Saddles: Install galvanized protection saddles MSS Type 39 where insulation without vapor barrier is indicated. Fill interior voids with segments of insulation that match adjoining pipe insulation. Secure the full contact area of the saddle to the pipe insulation with 1/8” thick coat of mastic.

C. Shields: Install protective shields MSS Type 40 on cold and chilled water piping that has vapor barrier. Secure the full contact area of the shield to the pipe insulation with 1/8” thick coat of mastic.

D. Shields shall span an arc of 180 degrees and shall have dimensions in inches not less than the following:

<table>
<thead>
<tr>
<th>Nominal Pipe Size</th>
<th>Shield Length</th>
<th>Gauge Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 through 3-1/2 inch</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>4 inch</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>5 through 6 inch</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>8 through 14 inch</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>16 through 24 inch</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>

E. Piping 2” and larger: provide galvanized sheet metal shields with calcium silicate insulation at hangers/supports.

F. Insert material shall be at least as long as the protective shield.

G. Thermal Hanger Shields: Install where indicated, with insulation of same thickness as piping.

3.4 EQUIPMENT BASES AND SUPPORTS

A. Provide equipment bases of concrete.

B. Provide templates, anchor bolts, and accessories for mounting and anchoring equipment.

C. Construct support of steel members. Brace and fasten with flanges bolted to structure.

D. Provide rigid anchors for pipes after vibration isolation components are installed.

3.5 FLASHING

A. Provide flexible flashing and metal counter flashing where piping and ductwork penetrate weather or waterproofed walls, floors, and roofs.

B. Provide curbs for mechanical roof installations that extend minimum 8 inches above adjacent roofing surface. Contact Architect for all flashing details and roof construction. Seal penetrations watertight.

3.6 SLEEVES

A. Set sleeves in position in formwork. Provide reinforcing around sleeves.

B. Extend sleeves through floors minimum one inch above finished floor level. Caulk sleeves full depth with fire rated thermafiber and 3M caulking and provide floor plate.

C. Where piping or ductwork penetrates floor, ceiling, or wall, close off space between pipe or duct and adjacent work with UL listed fire stopping insulation and caulking seal air tight. Provide close fitting metal collar or escutcheon covers at both sides of penetration.

D. Fire protection sleeves may be flush with floor of stairways.

END OF SECTION
SECTION 23 05 48

VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 WORK INCLUDED

A. Vibration and sound control products.

1.3 QUALITY ASSURANCE

A. Manufacturer’s Qualifications: Firms regularly engaged in manufacture of vibration control products of type, size, and capacity required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Vibration and sound control products shall conform to ASHRAE criteria for average noise criteria curves for all equipment at full load conditions.

C. Unless otherwise indicated, sound and vibration control products shall be provided by a single manufacturer.

1.4 SUBMITTALS

A. SHOP DRAWINGS: Indicate size, material, and finish. Show locations and installation procedures. Include details of joints, attachments, and clearances.

B. PRODUCT DATA: Submit schedules, charts, literature, and illustrations to indicate the performance, fabrication procedures, product variations, and accessories.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. VMC Group

B. Mason Industries, Inc.

C. Kinetics Noise Control, Inc.

D. Vibration Eliminator Co., Inc.

2.2 GENERAL

A. Provide vibration isolation supports for equipment, piping and ductwork, to prevent transmission of vibration and noise to the building structure that may cause discomfort to the occupants.

B. Model numbers of VMC Group products are included for identification. Products of the listed manufacturers will be acceptable provided they comply with all the requirements of this specification.
2.3 BASE MOUNTED PUMPS
A. Provide VMC Group model SP-NR, style E, elastomeric isolation pads consisting of two layers of 3/8" thick alternate ribbed elastomeric pad bonded to a 16 gauge galvanized steel separator plate.
B. Pads shall be sized for approximately 40 psi loading and 1/8" deflection.
C. Provide VMC Group model CPF, 8" concrete inertia base. Base shall be welded steel construction with concrete in-fill supplied by the contractor on site and shall incorporate standard rebar reinforcement, spaced a maximum of 12" on center. Provide VMC Group model AWH, floor mounted spring isolators sized for 1 inch static deflection.
D. Provide inertia bases for all base mounted pump applications in which the pumps are to be installed on any floor level other than the ground floor or grade level. Inertia bases shall also be provided for base mounted pump applications in which the associated mechanical room where they are housed is in a noise sensitive location, regardless of floor level.

2.4 BASE MOUNTED CHILLERS
A. Provide VMC Group model SP-NR, style E, elastomeric isolation pads consisting of two layers of 3/8" thick alternate ribbed elastomeric pad bonded to a 16 gauge galvanized steel separator plate.

2.5 PIPING
A. Provide VMC Group model HRS-1 combination spring and elastomeric isolation hangers sized for 1" deflection in mechanical equipment rooms, for a minimum distance of 50 feet from isolated equipment for all chilled water and hot water piping 1-1/2" diameter and larger.
B. Floor supported piping is required to be isolated with VMC Group model AW-1 open springs sized for 1" deflection.
C. All condenser water piping shall be supported with VMC Group model AW-1 open springs sized for 1" deflection for floor or roof mounted piping and VMC Group model HRS-1 combination spring and elastomeric isolation hangers sized for 1" deflection for suspended piping.
D. Provide line size flexible connectors at supply and return of pumps and all other locations indicated on the mechanical drawings and details. Flexible pipe connectors shall be VMC Group model 2800 single sphere EPDM construction and shall include 150 lb. cadmium plated carbon steel floating flanges.

2.6 CORROSION PROTECTION
A. All vibration isolators shall be designed and treated for resistance to corrosion.
B. Steel components: PVC coated or phosphate coated and painted with industrial grade enamel. Nuts, bolts, and washers: zinc-electroplated.

PART 3 - EXECUTION
3.1 INSTALLATION
A. All equipment shall be installed in accordance with the manufacturer's recommendations and printed installation instructions.
B. All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Provide all items required as per manufacturer's requirements.
C. If internal isolation option is used on air handling units, the mechanical contractor shall verify proper adjustment and operation of isolators prior to start-up. All shipping brackets and temporary restraint devices shall be removed.

D. The vibration isolation supplier shall certify in writing that he has inspected the installation and that all external isolation materials and devices are installed correctly and functioning properly.

END OF SECTION
PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 SCOPE

A. Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for owner's use.

B. Refer to Architectural Sections for additional requirements.

1.3 REFERENCE STANDARDS

PART 2 - PRODUCTS

2.1 VALVE AND PIPE IDENTIFICATION

A. Valves:

1. All valves shall be identified with a 1-1/2" diameter brass disc wired onto the handle. The disc shall be stamped with 1/2" high depressed black filled identifying numbers. These numbers shall be numerically sequenced for all valves on the job.

2. The number and description indicating make, size, model number and service of each valve shall be listed in proper operational sequence, properly typewritten. Three copies to be turned over to Owner at completion.

3. Tags shall be fastened with approved meter seal and 4 ply 0.018 smooth copper wire. Tags and fastenings shall be manufactured by the Seton Name Plate Company or approved equal.

4. All valves shall be numbered serially with all valves of any one system and/or trade grouped together.

B. Pipe Marking:

1. All interior visible piping located in accessible spaces such as above accessible ceilings, equipment rooms, attic space, under floor spaces, etc., shall be identified with all temperature pipe markers as manufactured by W.H. Brady Company, 431 West Rock Ave., New Haven, Connecticut, or approved equal.

2. All exterior visible piping shall be identified with UV and acid resistant outdoor grade acrylic plastic markers as manufactured by Set Mark distributed by Seton (Name plate Company Factory location 20 Thompson Road, Branford, Connecticut) or approved equal.

3. Generally, markers shall be located on each side of each and every partition, on each side of every tee, on each side of every valve and/or valve group, on each side of every piece of equipment, and, for straight runs, at equally spaced intervals not to exceed 75 feet. In congested area, marks shall be placed on each pipe at the points where it enters and leaves the area and at the point of connection of each piece of equipment and automatic control valve. All markers shall have directional arrows.

4. Markers shall be installed after final painting of all piping and equipment and in such a manner that they are visible from the normal maintenance position. Manufacturer's
installation instructions shall be closely followed.

5. Markers shall be colored as indicated below per ASME A13.1.

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>COLOR</th>
<th>LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water</td>
<td>Green</td>
<td>Chilled Water Supply; Chilled Water Return</td>
</tr>
<tr>
<td>Hot Water</td>
<td>Reddish Orange</td>
<td>Hot Water Supply; Hot Water Return</td>
</tr>
<tr>
<td>Condenser Water</td>
<td>Green</td>
<td>Condenser Water Supply; Condenser Water Return</td>
</tr>
<tr>
<td>Compressed Air</td>
<td>Blue</td>
<td>Compressed Air</td>
</tr>
<tr>
<td>Pneumatic Control</td>
<td>Yellow</td>
<td>Pneumatic Controls</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Yellow</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Green</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Deionized Water</td>
<td>Green</td>
<td>Deionized Water</td>
</tr>
<tr>
<td>Steam</td>
<td>Yellow</td>
<td>Steam Supply; Steam Return</td>
</tr>
</tbody>
</table>

C. Pipe Painting:

1. All piping exposed to view shall be painted as indicated or as directed by the Architect in the field. Confirm all color selections with Architect prior to installation.

2. All piping located in mechanical rooms and exterior piping shall be painted as indicated below:

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condenser Water Supply and Return</td>
<td>Light Green</td>
</tr>
<tr>
<td>Chilled Water Supply and Return</td>
<td>Light Blue</td>
</tr>
<tr>
<td>Heating Hot Water Supply and Return</td>
<td>Reddish Orange</td>
</tr>
</tbody>
</table>

2.2 EQUIPMENT IDENTIFICATION

A. Mechanical equipment shall be identified by means of nameplates permanently attached to the equipment. Nameplates shall be engraved laminated plastic or etched metal with minimum 1/2 inch high letters manufactured by Seton Company or approved equal. Submittals shall include dimensions and lettering format for approval. Attachment shall be with escutcheon pins, self-tapping screws, or machine screws.

PART 3 - EXECUTION

3.1 INSTALLATION

A. All labeling equipment shall be installed as per manufacturer’s printed installation instructions.

B. Provide printable label on ceiling grids and access doors at all locations that provide access to mechanical equipment, valves, motorized dampers, and accessories located above ceiling. The label shall be white with black text with 1/4 inch high letters and shall identify the component that is accessible at that location.

C. Provide printable label on ceiling grids and access doors at all locations that provide access to fire dampers, smoke dampers, and combination fire/smoke dampers located above ceiling. The label shall be white with red text with 1/2 inch high letters reading: FIRE/SMOKE DAMPER, SMOKE DAMPER, or FIRE DAMPER to identify the damper type that is accessible at that location.

D. All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Contractor's price shall include all items required as per manufacturer’s requirements.

E. All piping shall be cleaned of rust, dirt, oil and all other contaminants prior to painting. Refer to Division 9 for Architect’s required paint system(s).
END OF SECTION
SECTION 23 05 93
TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 RELATED DOCUMENTS

A. Approved submittal date on equipment installed, to accomplish the test procedures, outlined under paragraph 3.01 of this Section, will be provided by the Contractor.

1.3 DESCRIPTION

A. The TAB of the air conditioning systems shall be performed by an impartial technical firm hired by the Owner whose operations are limited only to the field of professional TAB. The TAB work will be done under the direct supervision of a qualified engineer employed by the TAB firm.

B. The TAB firm will be responsible for inspecting, adjusting, balancing, and logging the date on the performance of fans, dampers in the duct system, and air distribution devices. The Contractor and the various Subcontractors of the equipment installed shall cooperate with the TAB firm to furnish necessary data on the design and proper applications of the system components and provide labor and material required to eliminate deficiencies or malperformance.

1.4 QUALITY ASSURANCE

A. QUALIFICATIONS OF CONTRACTOR PERSONNEL: Submit evidence to show that the personnel who shall be in charge of correcting deficiencies for balancing the systems are qualified. The Owner and Engineer reserve the right to require that the originally approved personnel be replaced with other qualified personnel if, in the Owner and Engineer's opinion, the original personnel are not qualified to properly place the system in condition for balancing.

B. QUALIFICATIONS OF TAB FIRM PERSONNEL:

1. A minimum of one registered Professional Engineer licensed in the State, is required to be in permanent employment of the firm.

2. Personnel used on the jobsite shall be either Professional Engineers or technicians, who shall have been permanent, full time employees of the firm for a minimum of six months prior to the start of Work for that specified project.

3. Evidence shall be submitted to show that the personnel who actually balance the systems are qualified. Evidence showing that the personnel have passed the tests required by the Associated Air Balance Council (AABC) shall be required.

C. CALIBRATION LIST: Submit to the Engineer for approval, a list of the gauges, thermometers, velometer, and other balancing devices to be used in balancing the system. Submit evidence to show that the balancing devices are properly calibrated before proceeding with system balancing.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 SERVICES OF THE CONTRACTOR
A. The Drawings and Specifications have indicated valves, dampers, and miscellaneous adjustment devices for the purpose of adjustment to obtain optimum operating conditions. Install these devices in a manner that leaves them accessible, and provide access as requested by the TAB firm.

B. Have systems complete and in operational readiness prior to notifying the TAB firm that the project is ready for their services, and certify in writing to the Architect and Owner that such a condition exists.

C. As a part of the Work of this Section, make changes in the sheaves, belts, and dampers or the addition of dampers required for correct balance of the new work as required by the TAB firm, at no additional cost to the Owner.

D. Fully examine the existing system to be balanced, to determine whether or not sufficient volume dampers, balancing valves, thermometers, gauges, pressure and temperature taps, means of reading static pressure and total pressure in duct systems, means of determining water flow, and other means of taking data needed for proper water and air balancing are existing. Submit to the Engineer in writing a listing of omitted items considered necessary to balance existing systems. Submit the list and proposal as a cost add item.

E. Verify that fresh air louvers are free of blockage, coils are clean and fresh air ducts to each air handling unit have individually adjustable volume regulating dampers.

F. Provide, correct, repair, or replace deficient items or conditions found during the testing, adjusting, and balancing period.

G. In order that systems may be properly tested, balanced, and adjusted as specified, operate the systems at no expense to the Owner for the length of time necessary to properly verify their completion and readiness for TAB period.

H. Project construction schedules shall provide time to permit the successful completion of TAB services prior to Substantial Completion. Complete, operational readiness, prior to commencement of TAB services, shall include the following services of the Contractor:

1. Construction status of building shall permit the closing of doors, windows, ceilings installed and penetrations complete, to obtain project operating conditions.

2. WATER CIRCULATING SYSTEMS:
 a. Position valves pertinent to system design and require operation to permit full flow of water through system components. Operate hydronic systems under full flow conditions until circulating water is clean. Remove and clean strainers as required during this cycle of operation.
 b. For retrofit projects, record each existing pump motor amperage and voltage. Readings shall not exceed nameplate rating.
 c. Verify, on new equipment, electrical starter overload heater elements to be of proper size and rating.
 d. Ensure that water circulating systems shall be full of water and free of air; expansion tanks set for proper water level, and air vents installed at high points of systems and operating freely. Advise Engineer of deficiencies.
 e. Check and set operating temperatures of heat exchangers to design requirements.
 f. The various existing water circulating systems shall be cleaned, filled, purged of air, and put into operation before hydronic balancing.

3. AUTOMATIC CONTROLS:
 a. Verify that control components are installed in accordance with project documents and functional, electrical interlocks, damper sequences, air and water resets, fire and freeze stats.
 b. Controlling instruments shall be functional and set for design operating conditions. Factory precalibration of room thermostats and pneumatic equipment will not be acceptable.
 c. The temperature regulation shall be adjusted for proper relationship between the controlling instruments and calibrated by the TAB Contractor. Advise Engineer of deficiencies or malfunctions.
I. Contractor shall repair any insulation removed from piping system by TAB Contractor during water balancing.

3.2 SERVICES OF THE TAB FIRM

A. The TAB firm will act as liaison between the Owner, Engineer, and the Contractor and inspect the installation of mechanical piping system, sheet metal work, temperature controls and other component parts of the heating, air conditioning and ventilating systems being retrofitted, repaired, or added under this Contract. The reinspection of the Work will cover that part related to proper arrangement and adequate provision for the testing and balancing and will be done when the Work is 80 percent complete.

B. Upon completion of the installation and start-up of the mechanical equipment, to check, adjust, and balance system components to obtain optimum conditions in each conditioned space in the building. Prepare and submit to the Engineer complete reports on the balance and operations of the systems.

C. Measurements and recorded readings of air, water, and electricity that appear in the reports will be done by the permanently employed technicians or engineers of the TAB firm.

D. Make an inspection in the building during the opposite season from that in which the initial adjustments were made. At the time, make necessary modifications to the initial adjustments required to produce optimum operation of system components to affect the proper conditions as indicated on the Drawings. At time of opposite season check-out, the Owner’s representative will be notified before readings or adjustments are made.

E. In fan systems, the air quantities indicated on the Drawings may be varied as required to secure a maximum temperature variation of two degrees within each separately controlled space, but the total air quantity indicated for each zone must be obtained. It shall be the obligation of the Contractor to furnish or revise fan drive and motors if necessary, without cost to the Owner, to attain the specified air volumes.

F. Contractor shall utilize ultrasonic flow meter to balance water flow of existing water system if the original pressure drop data is not available. Contractor shall remove insulation as necessary to use flow meter.

G. Participate in the commissioning process, which shall include but not be limited to attending commissioning meetings, coordinating work with and completing checklists as required by the commissioning team.

3.3 PROFESSIONAL REPORT

A. Before the final acceptance of the report is made, the TAB firm will furnish the Engineer the following data to be approved by the Owner and Engineer:

1. Summary of main supply, return and exhaust duct pitot tube traverses and fan settings indicating minimum value required to achieve specified air volumes.
2. A listing of the measured air quantities at each outlet corresponding to the temperature tabulation as developed by the Engineer and TAB firm.
3. Air quantities at each return and exhaust air handling device.
4. Static pressure readings entering and leaving each supply fan, exhaust fan, filter, coil, balancing dampers and other components of the systems. Including the retrofit Work. These readings will be related to performance curves in terms of the CFM handled if available.
5. Motor current readings at each equipment motor on load side of capacitors. The voltages at the time of the reading shall be listed.
6. The final report shall certify test methods and instrumentation used, final velocity reading obtained, temperatures, pressure drops, RPM of equipment, amperage of motors, air balancing problems encountered, recommendations and uncompleted punch list items. The test results will be recorded on standard forms.
7. A summary of actual operating conditions shall be included with each system outlining normal and ventilation cycles of operation. The final report will act as a reference of actual operating conditions for the Owner's operating personnel.

END OF SECTION
SECTION 23 07 16
HVAC EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 SCOPE

A. Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for Owner's use.

B. Work specified elsewhere.
 1. Basic materials and methods.
 2. Piping systems.
 3. Air distribution equipment.

1.3 REFERENCE STANDARDS

I. SCAQMD 1168 - Adhesive and Sealant Applications.

1.4 QUALITY ASSURANCE

A. Installer's Qualifications: Firm with at least 5 years successful installation experience on projects with mechanical insulations similar to that required for this project.

B. All insulation shall be listed and labeled to have a composite (insulation, jacket or facing, and adhesive used to adhere the facing or jacket to insulation) flame spread index of not more than 25 and smoke-developed index of not more than 50 when tested in accordance with ASTM E84 and UL 723.
C. All HVAC equipment insulation shall comply with minimum requirements of ICC (IECC) and ASHRAE Std 90.1 I-P.

D. Adhesives and other materials shall comply with NFPA 90A and NFPA 90B. Additionally, all adhesives and sealants used on the interior of the building (i.e., inside of the weatherproofing system and applied on-site) shall be comprised of low-emitting materials that comply with VOC limits prescribed by SCAQMD 1168.

1.5 WARRANTY

A. Warrant the Work specified herein for one year against becoming unserviceable or causing an objectionable appearance resulting from either defective or nonconforming materials and workmanship.

B. Defects shall include, but not be limited to, the following:
 1. Mildewing.
 2. Peeling, cracking, and blistering.
 3. Condensation on exterior surfaces.

1.6 SUBMITTALS

A. SHOP DRAWINGS: Indicate size, material, and finish. Show locations and installation procedures. Include details of joints, attachments, and clearances.

B. PRODUCT DATA: Submit schedules, charts, literature, and illustrations to indicate the performance, fabrication procedures, product variations, and accessories.

1.7 DELIVERY AND STORAGE

A. Deliver insulation, coverings, cements, adhesives, and coatings to site in unopened containers with manufacturer’s stamp, clearly labeled with flame and smoke rating, affixed showing fire hazard indexes of products.

B. Protect insulation against dirt, water and chemical and mechanical damage. Do not install damaged or wet insulation; remove such from project site.

PART 2 - PRODUCTS

2.1 EQUIPMENT INSULATION

A. It is the intent of these specifications to secure superior quality workmanship resulting in an absolutely satisfactory installation of insulation from the standpoint of both function and appearance. Particular attention shall be given to valves, fittings, pumps, etc., requiring low temperature insulation to insure full thickness of insulation and proper application of the vapor seal. All flaps of vapor barrier jackets and/or canvas covering must be neatly and securely smoothed and sealed down.

B. The type of insulation and its installation shall be in strict accordance with these specifications for each service, and the application technique shall be as recommended by the manufacturer. All insulation types, together with adhesives and finishes shall be submitted and reviewed before any insulation is installed.

C. A sample quantity of each type of insulation and each type application shall be installed and reviewed prior to proceeding with the main body of the work. Condensation caused by improper installation of insulation shall be corrected by Installing Contractor. Any damage caused by condensation shall be made good at no cost to the Owner or Architect/Engineer.
D. Glass mineral wool materials as manufactured by Knauf Insulation, Owens/Corning, Certain-Teed or Johns Manville will be acceptable, if they comply with the specifications.

E. Accessories, such as adhesives, mastics and cements shall have the same component ratings as listed above. Additionally, all adhesives and sealants used on the interior of the building (i.e., inside of the weatherproofing system and applied on-site) shall be comprised of low-emitting materials that comply with VOC limits prescribed by SCAQMD 1168.

F. All products or their shipping cartons shall have a label affixed, indicating flame and smoke ratings do not exceed the above requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

A. All insulation shall be installed in accordance with the manufacturer’s recommendations and printed installation instructions.

B. All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Provide all items required as per manufacturer’s requirements.

3.2 CHILLED WATER PUMPS

A. Shall be insulated with Knauf Insulation Board with ECOSE Technology, Certain-Teed IB-600 or equal, rigid insulation board, 2" thick, cut and formed into a box and secured in place with 3/4" wide x 0.020 galvanized bands spaced on 9" centers. Bands shall be pulled snug over sheets of insulation board. All joints shall be well and neatly fitted and so arranged that the assembly may be dismantled with ease permitting access to the pump. All voids on the interior of box shall be filled with glass mineral wool blanket insulation. Exterior shall be finished with a trowel coat of Foster's 30-35 vapor barrier mastic, a layer of 1" mesh galvanized wire, and a coat of Johns Manville CALCOAT-127 finishing cement. Final finish shall be an eight ounce canvas jacket, pasted and sealed in place with Foster's 30-36 Seafas.

B. Insulation Board shall comply with ASTM C612 and ASTM C553. The associated FSK facing shall comply with ASTM C1136.

C. Pipe insulation shall be extended over all cold parts of chilled water pumps not directly over drainage basin of pump base.

END OF SECTION
PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS
 A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.
 B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 SCOPE
 A. Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for Owner's use.
 B. Furnish and install piping insulation to:
 1. Chilled water and heating hot water piping.
 2. All pipes subject to freezing conditions shall be insulated.
 C. Work specified elsewhere.
 1. Painting.
 2. Pipe hangers and supports.
 D. For insulation purpose piping is defined as the complete piping system including supplies and returns, pipes, valves, automatic control valve bodies, fittings, flanges, strainers, thermometer well, unions, reducing stations, and orifice assemblies.

1.3 RELATED SECTIONS
 A. Section 23 05 29 - Hangers and Supports for Piping and Equipment - HVAC
 B. Section 23 05 53 - Identification for HVAC Piping and Equipment
 C. Section 23 21 13 - Above Ground Hydronic Piping

1.4 REFERENCE STANDARDS
G. SCAQMD 1168 - Adhesive and Sealant Applications.

1.5 WARRANTY

A. Warrant the Work specified herein for one year against becoming unserviceable or causing an objectionable appearance resulting from either defective or nonconforming materials or workmanship.

B. Defects shall include, but not be limited to, the following:
 1. Mildewing.
 2. Peeling, cracking, and blistering.
 3. Condensation on exterior surfaces.

1.6 SUBMITTALS

A. SHOP DRAWINGS: Indicate size, material, and finish. Show locations and installation procedures. Include details of joints, attachments, and clearances.

B. PRODUCT DATA: Submit schedules, charts, literature, and illustrations to indicate the performance, fabrication procedures, project variations, and accessories.

1.7 DELIVERY AND STORAGE

A. Deliver insulation, coverings, cements, adhesives, and coatings to site in unopened containers with manufacturer’s stamp, clearly labeled with flame and smoke rating, affixed showing fire hazard indexes of products.

B. Protect insulation against dirt, water and chemical and mechanical damage. Do not install damaged or wet insulation; remove such from project site.

PART 2 - PRODUCTS

2.1 HVAC PIPING INSULATION

A. It is the intent of these specifications to secure superior quality workmanship resulting in an absolutely satisfactory installation of insulation from the standpoint of both function and appearance. Particular attention shall be given to valves, fittings, pumps, etc., requiring low temperature insulation to insure full thickness of insulation and proper application of the vapor seal. All flaps of vapor barrier jackets and/or canvas covering must be neatly and securely smoothed and sealed down.

B. The type of insulation and its installation shall be in strict accordance with these specifications for each service, and the application technique shall be as recommended by the manufacturer. All insulation types, together with adhesives and finishes shall be submitted and reviewed prior to installation.

C. A sample quantity of each type of insulation and each type application shall be installed and accepted prior to proceeding with the main body of the work. Condensation caused by improper installation of insulation shall be corrected by Installing Contractor. Any damage caused by condensation shall be made good at no cost to the Owner or Architect/Engineer.

D. All insulation shall be listed and labeled to have a composite (insulation, jacket or facing, and adhesive used to adhere the facing or jacket to insulation) flame spread index of not more than 25 and smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723.
E. All HVAC piping insulation shall comply with minimum requirements of ICC (IECC) and ASHRAE Std 90.1 I-P.

F. Accessories, such as adhesives, mastic and cements shall have the same component ratings as listed above. Additionally, all adhesives and sealants used on the interior of the building (i.e., inside of the weatherproofing system and applied on-site) shall be comprised of low-emitting materials that comply with VOC limits prescribed by SCAQMD 1168.

G. All products or their shipping cartons shall have a label affixed, indicating flame and smoke ratings do not exceed the above requirements.

H. Any existing piping located in an air plenum that is comprised of materials that do not comply with the 25/50 flame and smoke rating per ASTM E84 testing requirements shall be provided with a single layer of high-temperature insulation to establish a non-combustible rating per ASTM E136. Insulation products which are approved for such non-compliant combustible piping materials located air plenums shall be 3M Fire Barrier Plenum Wrap 5A+ or Unifrax FyreWrap 0.5 Plenum. Insulation products for this application shall be installed in strict accordance with the manufacturer’s instructions.

2.2 APPROVED MANUFACTURERS

A. Calcium silicate materials shall be as manufactured by Johns Manville.

B. Glass mineral wool materials shall be as manufactured by Knauf Insulation, Johns Manville or Owens-Corning and shall have the same thermal properties, density, fire rating, vapor barrier, etc., as the types specified herein, subject to review by the Engineer. All glass mineral wool insulation shall be UL GREENGUARD Gold certified.

C. Adhesives shall be as manufactured by Childers, Foster, HB Fuller or Armacell, and shall have the same adhesive properties, fire rating, vapor seal, etc., as the types specified herein, subject to review by the Engineer.

D. Flexible elastomeric cellular thermal insulation by Armacell.

E. Phenolic foam insulation shall be as manufactured by Resolco, Inc. (Insul-Phen) or Polyguard (Poly-phen).

F. Metal jacketing and fitting covers shall be as manufactured by Childers or RPR Products.

2.3 MATERIALS

A. CHILLED WATER: Provide phenolic foam in accordance with ASTM C1126 with ASJ jacket and all joints sealed.

C. ALL SERVICE JACKETING (ASJ+): Vapor retarder jacket for interior applications shall be composed of an aluminum foil layer, reinforced with glass scrim, bonded to a layer of white kraft paper, interleafing with an outer polymer film leaving no paper exposed; complying with ASTM C1136. Vapor retarder jacket for exterior applications shall be composed of a 3-ply composite membrane consisting of a white 0.5 mil polyester film, 1.0 mil aluminum foil, and one 0.5 mil clear polyester film; complying with ASTM C1136.

PART 3 - EXECUTION

3.1 GENERAL
A. All insulation shall be installed in accordance with the manufacturer’s recommendations and printed installation instructions, including high density inserts at all hangers and pipe supports to prevent compression of insulation.

B. All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Provide all items required as per manufacturer’s requirements.

C. All heat recovery piping between air conditioning equipment and hydronic or domestic hot water piping shall be insulated per the High Temperature Surfaces Schedule below.

D. All condenser water piping located in a ceiling plenum shall be insulated per the Low Temperature Surfaces Schedule below.

E. Pipes located outdoors or in tunnels shall be insulated same as concealed piping and shall have a jacket of 0.016 inch thick, smooth aluminum with longitudinal modified Pittsburg Z-Lock seam and 2 inch overlap. Jacketing shall be easily removed and replaced without damage. All insulation butt joints shall be sealed with gray silicone. Galvanized banding is not acceptable.

F. All insulated piping located over driveways shall have an aluminum shield permanently banded over insulation to protect it from damage from car antennas.

G. Provide all HVAC piping insulation to comply with the ASHRAE Std 90.1 I-P Minimum Thickness Schedule and as indicated below.

1. Minimum Insulation Thickness for Low Temperature Surfaces
 a. Chilled Water Piping:
 1) Located outdoors: 2 inch
 2) Located indoors:
 a) 4 inch and smaller: 1-½ inch
 b) Larger than 4 inch: 2 inch

3.2 WATER PIPE INSULATION INSTALLATION

A. The insulation shall be applied to clean, dry pipes with all joints firmly butted together. Where piping is interrupted by fittings, flanges, valves or hangers and at intervals not to exceed 25 feet on straight runs, a vapor dam shall be formed between the vapor retarder jacket and the bare pipe. The seal shall be by the applications of vapor retarder mastic to the exposed insulation joint faces, carried continuously down to and along 4 inches of pipe and up to and along 2 inches of jacket.

B. Pipe fittings and valves shall be insulated with pre-molded or shop fabricated glass mineral wool covers finished with two brush coats of vapor retarder mastic reinforced with glass fabric.

C. All under lap surfaces shall be clean and free of dust, etc. before the joint is sealed. These laps shall be firmly rubbed to insure a positive seal. A brush coat of vapor retarder mastic shall be applied to all edges of the vapor retarder jacket.

END OF SECTION
PART 1 - GENERAL

1.1 GENERAL

A. The Energy Management and Control System (EMCS) shall be comprised of a Local Area Network (LAN) infrastructure, Operator Workstations (OWS), Engineering Workstations (EWS), a Primary Network Server (PNS), Network Area Controllers (NAC), Application Specific Controllers (ASC), Unitary System Controllers (USC), and Field Devices installed within the facility. The EMCS Contractor shall provide a completely wired system. Wireless components and wireless communication are not acceptable.

B. The Workstations, Primary Network Server, and Network Area Controllers shall be connected by a EMCS Contractor supplied and installed Local Area Network. The LAN shall comply with all IEEE Standards as outlined in the latest revision of IEEE 802: Local and Metropolitan Networks: Overview and Architecture.

C. If the EMCS contractor wishes to connect to the Owner’s Wide Area/Local Area Network as part of the control system network, the EMCS contractor shall acquire permission in writing and include the letter in the submittal. Any system that requires connection to the owner’s network for communication between NAC, ASC, USC and/or field devices that is submitted without the written permission from the owner shall be rejected. The EMCS Contractor shall coordinate with the Owner and supply all required information.

D. Access to the system, either locally in the building, or remotely from a central site or sites, shall be accomplished through standard web browsers, via the Internet and/or a local area network.

E. All EMCS controllers and workstations shall communicate using the protocols and network standards as defined by ASHRAE Std 135, latest revision. Management level TCP/IP Ethernet network speeds shall be 1 Gbps minimum and the Automation Level MS/TP network speeds shall be 76.8 Kbps minimum.

F. The Server shall gather data from the system and generate HTML pages accessible through a conventional web browser from all personal computers (PCs) connected to the network. System shall include any and all software and hardware to support at least 50 simultaneous users. The EMCS shall be compatible with all common web browsers.

G. Facility Operators shall be able to view and configure systems through the standard web browser and all graphical/data representations shall appear identical, whether the user is on site or viewing via the Internet at a remote location. Standard operator functions such as control point manipulation, configuration and viewing of trends, schedules and alarms shall be performed through the standard browser. Each mechanical system and building floor plan shall be depicted on the operator workstation by point-and-click graphics.

H. The EMCS shall directly control HVAC equipment as specified in the Sequence of Operations. Furnish Energy Conservation features such as Optimal Start/Stop, Night Setback, Setpoint Reset logic, and Demand Control Ventilation.

I. The EMCS vendor shall provide the following additional services as part of this specification: warranty and service during the warranty period; submittals, samples and record documentation; comprehensive startup and testing of the EMCS with documentation; training services for the owner and facility operators; coordination with other contractors and suppliers; operator and technician training program, and shall cooperate fully with the Project Commissioning Agent.

J. Products furnished under this specification but installed by other.
1. Mechanical devices installed under Division 23 by the mechanical contractor or other suppliers:
 a. Temperature sensing thermowells.
 b. Automatic control valves and actuators.
 c. Pipe taps for flowmeters.
 d. Water pressure sensors and switches.
 e. Automatic control dampers and actuators not installed in air handling unit mixing boxes or louver.
 f. Damper actuators for automatic control dampers installed in air handling unit mixing boxes.
 g. Damper actuators for variable air volume (VAV) terminal units.
 h. Mounting cost of controller and actuator for variable air volume (VAV) terminal units.

2. Electrical devices installed under Division 26 by the electrical contractor:
 a. 120 VAC power to controllers and control panels at locations indicated on the drawings. Review and verify that these locations are adequate for the proposed EMCS.
 b. Interlock wiring to duct mounted smoke detector or fire alarm shutdown relays to HVAC equipment motor starters and variable frequency drives (VFD).

K. Provide and install all interconnecting cables between all operator’s terminals and peripheral devices (such as printers, etc.) supplied under this section.

1.2 RELATED DOCUMENTS & REFERENCES

A. Drawings and general provisions of the contract documents, apply to this section including:

1. Division 01 for General Conditions and Supplementary Conditions.
2. Division 21 for fire protection equipment.
3. Division 22 for plumbing equipment and domestic water systems.
4. Division 23 for mechanical equipment, ductwork, and piping systems.
5. Division 26 for electrical equipment, lighting control, and fire alarm systems.

B. The latest edition of the following standards and codes in effect as approved by the authority having jurisdiction and amended as of supplier’s proposal date, and any applicable subsections thereof, shall govern design and selection of equipment and material supplied:

1. ANSI MC86.1 - Terminology for Automatic Control.
2. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
3. ASHRAE Std 135 - BACnet.
4. BTL Mark by the BACnet Testing Laboratories.
5. Uniform Building Code (UBC), including local amendments.
6. UL 916 - Underwriters Laboratories Standard for Energy Management Equipment. Canada and the US.
7. NFPA 70, National Electrical Code (NEC).
8. FCC Part 15, Subpart J, Class A.
10. IEEE 802: Local and Metropolitan Networks: Overview and Architecture.

1.3 RELATED WORK IN OTHER SECTIONS

A. Refer to Division 00 and Division 01 for allowances and related contractual requirements.

B. Refer to Division 21 for General Fire Protection Provisions and fire suppression pump.

1. The EMCS contractor shall provide communications integration via BACnet/IP interface to each installed system listed above. BACnet MS/TP is acceptable if IP interface is not available from equipment manufacturer.
2. The EMCS contractor shall coordinate with all vendors providing above systems to obtain communications requirements and points lists. Map all available points to EMCS.
C. Refer to Division 22 for General Plumbing Provisions, domestic water heating systems, domestic water pumping systems, domestic water metering, and natural gas metering.

1. The EMCS contractor shall provide communications integration via BACnet/IP interface to each installed system listed above. BACnet MS/TP is acceptable if IP interface is not available from equipment manufacturer.
2. The EMCS contractor shall coordinate with all vendors providing above systems to obtain communications requirements and points lists. Map all available points to EMCS.

D. Refer to Division 23 for General Mechanical Provisions for equipment such as chillers, cooling towers, boilers, pumps, air-handling units, terminal units, ventilation fans, variable frequency drives, unitary AC units, etc.

1. The EMCS contractor shall provide communications integration via BACnet/IP interface to each installed system listed above. BACnet MS/TP is acceptable if IP interface is not available from equipment manufacturer.
2. The EMCS contractor shall coordinate with all vendors providing above systems to obtain communications requirements and points lists. Map all available points to EMCS.

E. Refer to Section 26 for General Electrical Provisions for equipment such as electrical switchgear control, electrical power monitoring, emergency generators, lighting control system, etc.

1. The EMCS contractor shall provide communications integration via BACnet/IP interface to each installed system listed above. BACnet MS/TP is acceptable if IP interface is not available from equipment manufacturer.
2. The EMCS contractor shall coordinate with all vendors providing above systems to obtain communications requirements and points lists. Map all available points to EMCS.

1.4 ELECTRICAL POWER PROVISIONS

A. Primary power will be provided under Division 26 by the electrical contractor to the panel locations indicated on the mechanical & electrical drawings. Provide step down transformers within panel enclosures. Provide all necessary fuses and circuit protection devices.

B. Power will be provided to the controllers serving fan powered terminal units with electric heat via the control transformer provided with the unit.

C. All components of the EMCS shall be powered from the sources above. Provide final terminations from the locations indicated on the Division 23 Drawings.

D. The EMCS Contractor shall provide any additional control power that is required as part of this contract and not indicated by other. This shall include all conduit, cabling, circuit breakers, etc.

1.5 CONTRACTOR QUALIFICATIONS

A. The EMCS Contractor shall:

1. Have a local staff of trained personnel capable of giving instructions and providing routine and emergency maintenance on the EMCS, all components and software/firmware and all other elements of the EMCS.
2. Have a proven record of experience in the supply and installation of equivalent BACnet systems over a minimum period of five years. Provide documentation of at least three equal and complexity, if so requested by the Owner's Representative.
3. Be a factory certified representative of the native BACnet EMCS manufacturer for design, installation, and service of the proposed system.
4. Have comprehensive local service, training and support facilities for the total EMCS as provided. Maintain local, supplies of essential expendable parts.

1.6 SUBMITTALS
A. ALL DOCUMENTS SUBMITTED SHALL BE IN NATIVE PDF FORMAT. NO SCANS.

B. Shop Drawings:

1. The following information shall be included on the cover page for each shop drawing and equipment documentation submittal:
 a. Project name with date. Refer to the applicable specifications by name and number.
 b. Provide submittal number and re-submittal number and date as applicable.
 c. Provided name and address of Consulting Engineer, Mechanical Contractor, General Contractor

2. Shop drawings shall be CAD generated, plot size of 8-1/2" x 11" or 11" x 17". Drawings shall include diagrams, mounting instructions, installation procedures, equipment details and software descriptions for all aspects of the system to be installed.

3. Provide schematic of systems indicating instrumentation locations, all interconnecting cables between supplied cabinets on a mechanical floor plan.

4. Software specifications and descriptions including operating sequences.

5. Provide a bill of material that indicates specific manufacturer, part number, part description and quantity of each device for all system components.

6. Provide a list of the wire labels to be installed on each end of the control wiring, at the device and the control panel terminal. Labels shall be machine generated, typed and legible with a maximum of 17 characters. The label description “AHU-1 SAT” shall indicate the supply air temperature of AHU-1.

7. Equipment Schematic: Provide an electronic equipment schematic for each piece of mechanical equipment. The schematic shall display all mechanical equipment characteristics including fans, dampers, valves, sensors and other applicable control devices. The schematic shall show wiring terminations to each control device as shown in the submittal and as-build documentation. Control devices shall be labeled by a symbol that can easily be identified in a bill of material that is shown on this graphic. The bill of material shall show the device symbol, description, manufacturer and part number.

8. Sequence of Operations: The control sequences shall be viewable for each piece of mechanical equipment and be in a text format as shown in the as built documentation. The sequence of operations shall be selectable at the applicable location for the control program.

C. Control component submittals:

1. Component technical data sheets with mounting and installation details.

2. The documentation shall include comprehensive and complete details of the BIBB and automation level documentation including address, associated controller type, etc. as required and for the interface to the EMCS.

3. Details of networks/communications equipment, cabling and protocols proposed. Provide schedule of cabling including details of proposed cable types.

4. Module Drawing: Provide an electronic wiring diagram of each control module (as shown in submittal documentation). Diagram shall display wiring schematic and terminations to end devices. Diagram shall display each input and output terminals and label those that are used for the control application. Diagram shall display module type/name and network address.

5. Field sensor and instrumentation specification sheets. Provide complete manufacturer’s specifications for all items that are supplied. Include vendor name of every item supplied.

6. Schedule and specification sheets for dampers, valves and actuators.

7. Design and provide layout of all components of panel mounted control devices, terminal strips and power supplies.

D. Colorgraphics: Provide sample layout of color graphic representations of the systems for review. The submittal shall indicate the quality of the graphic to be provided with the system with a sample of the specific control points to be included. Control points shall as a minimum include points indicated in the input/output summary, control schematic and primary controlling points defined in the sequences of operation. Provide a sample of a floor plan layout, typical AHU, terminal unit, outside air pretreatment unit, variable frequency drive, exhaust/supply fan, chiller plant and hot water plant. For control points to be provided by equipment BACnet integration provide sample of the control points, up to 25 total.
E. Verification Reports: The submittal shall include a sample of the verification reports to be utilized during the verification section of this specification. Sample reports shall be approved as submitted or be modified by the engineer or owner’s representative. The verification reports shall be included in the final Operation & Maintenance Manuals. Reports shall be provided in electronic PDF format.

1. Project Systems Verification Form for each controller.
 a. General information for each form shall include: project name; associated equipment with mark number; control panel number and location; controller number and model number; controller device instance number (address); MS/TP LAN segment number; verifying technician and date.
 b. Each connected control point and device shall contain the following columns with a separate line for each connected physical point: point description (same as device label); input/output number for each connected control device (AI-XX, AO-XX, DI-XX, or DO-XX).
 c. Check boxes confirming that the verification tasks have been completed: device location, proper termination at device; proper termination at control panel; sequence is verified; point trend is enabled.
 d. Data entry boxes indicating measured/confirmed values: preliminary control point value on the graphic; observed control point value; calibration or adjustment value to correct offset; final displayed point value on the color-graphic; date of verification; engineer or owner’s representative verification.

2. Control Panel Verification Form for each control panel.
 a. General information: panel location and identification number; panel dimensions and NEMA rating; panel properly installed; Class 1 and Class 2 wiring are properly separated; correct voltage to the panel; no shorts or grounds in panel; no induce voltages in panel wiring; point to point termination match submittal; devices are mounted in the correct location; controller software revision number; address of controllers; panel device checkout is complete; panel startup is complete.

3. Sequence of Operation Verification Form per piece of equipment (AHU, VAV, chiller, boiler, etc.).
 a. General information: project name; system identifier; building area served; control panel and controller numbers; controller model number and instance number (address); MS/TP LAN segment number; name of verifying technician and date.
 b. Each step of the sequence of operation for each piece of equipment shall be documented shall include a “description of test”, “input to trigger test” and “expected outcome”. A pass/fail checkbox shall indicate each of these actions. Provide space for technician approval with associated date.

F. Operating and Maintenance (O&M) manuals: Provide O&M manual with full information to allow the owner to operate, maintain and repair installed products. Include trade names with model numbers, color, dimensions and other physical characteristics.

1. Format: Produce on 8-1/2 x 11-inch pages, and bind in 3-ring/binders with durable plastic covers. Label binder covers with printed title "OPERATION AND MAINTENANCE MANUAL", title of project, and subject matter and "Number _ of _" of binder. Provide substantial dividers tabbed and titled by section/component number.

2. Table of Contents for each volume:
 a. Part 1: Directory with name, address and telephone number of Designer, Contractor and Subcontractors and Suppliers for each Project Manual section.
 b. Part 2: Operation and maintenance instructions, arranged by Project Manual Section number where practical and where not, by system. Include:

3. Product design criteria, functions, normal operating characteristic and limiting conditions. Installation, alignment, adjustment, checking instructions and troubleshooting guide. Operating instructions for start-up, normal operation, regulation and control, normal shutdown and emergency shutdown. Test data and performance curves.

4. Spare parts list for operating products, prepared by manufacturers including detailed drawings giving location of each maintainable part, lists of spares recommended for user-service inventory and nearest source of in-stock spares.

G. Record Documentation:
1. Details of all alarm, diagnostic, error and other messages. Detail the Operator action to be taken for each instance.
2. Detail special programs provided and provide a complete programming instruction manual. Detail operation of all software applications.
3. Detailed list of the database for all installed devices.
4. Record drawings shall be CAD generated and shall include final locations and point ID for each monitored and controlled device.
5. In additional to the required hard-copies, provide a CD-ROM with all of the record documentation in PDF format and a CD-ROM containing backup copies of all installed software and graphics.
6. Online as-built documentation: provide digital replications of as-builts that shall be accessible from each equipment graphic controlled or monitored by the EMCS.

1.7 WARRANTY

A. Warranty work and the equipment provided under this contract shall be for a period of one year from the date of Substantial Completion. Warranty shall cover all components, system software, parts and assemblies supplied by this contractor and shall be guaranteed against defects in materials and workmanship for one (1) year from the date of Substantial Completion. Labor to troubleshoot, repair, reprogram or replace system components that have failed due to defects in materials and workmanship shall be provided by this contractor at no charge to the owner during the warranty period. All corrective software modifications made during warranty service periods shall be updated on all user documentation and on user and manufacturer archived software disks. All warranty work shall be performed by the EMCS contractor’s local service group.

B. Warranty shall not include routine maintenance, e.g., equipment cleaning, mechanical parts lubrication, pilot lamp replacement, operational testing, etc. Warranty shall not cover repair or replacement of equipment damaged by under- or over-voltage, misuse, lack of proper maintenance, lightning, water damage from weather or piping failure.

C. Hardware and software personnel supporting this warranty agreement shall provide on-site or off-site service in a timely manner after failure notification to the EMCS contractor. The maximum acceptable response time to provide this service at the site shall be 24 hours, during normal working hours.

1.8 OPERATIONS PERSONNEL TRAINING

A. Provide a training session for the owner’s operations personnel. Training session shall be performed by a qualified person who is knowledgeable in the subject system/equipment. Submit a training agenda two (2) weeks prior to the proposed training session for review and approval. Training session shall include at the minimum:

1. Purpose of equipment.
2. Principle of how the equipment works.
3. Important parts and assemblies.
4. How the equipment achieves its purpose and necessary operating conditions.
5. Most likely failure modes, causes and corrections.
6. On site demonstration that includes hands-on demonstration of the manipulation of setpoints, schedules and other adjustable elements of the system.
7. The demonstration shall be on the actual, completed graphic interface pages for the specific project.

B. Provide a second training session 3 months after initial session for any follow-up or additional training requested by owner’s personnel. Allow 3 hours for the second training session.

PART 2 - PRODUCTS

2.1 ACCEPTABLE EMCS VENDORS

A. AUTOMATED LOGIC - Branch Office

2.2 APPLICATION SPECIFIC CONTROLLERS (ASC)
A. All devices required for single loop control shall be terminated on a single controller. (for example, CHW loop pressure control. The differential pressure sensor and the pump VFD ramp signal.)

B. ASCs shall be capable of implementing control strategies for the system based on information from any or all connected inputs. The AC shall utilize factory pre-programmed global strategies that may be modified by field personnel on-site. Global control algorithms and automated control functions should execute via a 32-bit processor.

C. Programming shall be object-oriented using control program blocks that will support a minimum of 500 Analog Values and 500 Binary Values. Analog and binary values shall support standard BACnet priority arrays. Provide means to graphically view inputs and outputs to each program block in real-time as program is executing.

D. Controller shall have adequate data storage to ensure high performance and data reliability. Battery shall retain static RAM memory and real-time clock functions for a minimum of 1 year (cumulative). Battery shall be a field-replaceable (non-rechargeable) lithium type. The onboard, battery-backed real time clock must support schedule operations and trend logs.

E. The base unit of the ASC shall host various I/O combinations including universal inputs, binary outputs, and switch selectable analog outputs (0-10V or 0-20 mA). Inputs shall support thermistors, 0-5VDC, 0-10VDC, 4-20mA, dry contacts and pulse inputs directly.

F. All binary outputs shall have onboard Hand-Off-Auto switches and a status indicator light. HOA switch position shall be monitored. The position of each HOA switch shall be available system wide as a BACnet object.

G. Controller shall be capable of BACnet communication. BACnet Conformance:

1. Standard BACnet object types supported shall include as a minimum: Analog Input, Binary Input, Analog Output, Binary Output, Analog Value, Binary Value, Device, File, Group, Event Enrollment, Notification Class, Program and Schedule object types. All necessary tools shall be supplied for working with proprietary information.

H. Schedules: Each ASC shall support a minimum of 10 BACnet schedule objects.

I. Logging Capabilities: Each controller shall support a minimum of 100 trend logs. Sample time interval shall be adjustable at the operator’s workstation. Controller shall periodically upload trended data to system server for long term archiving if desired. Archived data stored in database format shall be available for use in third-party spreadsheet or database programs.

J. Alarm Generation: Alarms may be generated within the system for any object change of value or state either real or calculated. This includes things such as analog object value changes, binary object state changes, and various controller communication failures. Alarm logs shall be provided for alarm viewing. Log may be viewed on-site at the operator’s terminal or off-site via remote communications. Controller must be able to handle up to 200 alarm setups stored as BACnet event enrollment objects -system destination and actions individually configurable.

2.3 UNITARY SYSTEM CONTROLLERS (USC)

A. All devices required for single loop control shall be terminated on a single controller. (for example, cooling coil control valve control. The temperature sensor and the valve control signal.)

B. The EMCS Contractor shall provide all Unitary System Controllers. USC shall be fully programmable or applications specific controllers with pre-packaged operating sequences maintained in Flash RAM.

C. The USC shall be a node on the automation network and shall control its own communications so that the failure of any one node, shall not inhibit communications on the network between the remaining nodes. USC shall be totally independent of other network nodes for their monitoring and control functions.
D. Provide each USC with a battery back-up for the protection of volatile memory for a minimum of 72 hours. Batteries shall be rated for a seven-year life.

E. All associated applications programs shall reside at the USC. The USC shall not require communication to any other panel for normal operating sequences other than time scheduled base commands.

F. Control shall be based on algorithms, i.e. proportional plus integral plus derivative (PID), proportional plus integral (PI), or proportional to comply with the sequences of operation PID algorithms shall maintain the system operation within +/- 2% of setpoint.

G. The USC shall be configured with sufficient input/output capacity to achieve the required control points to meet the sequence of operations.

2.4 ENERGY SAVING PROGRAMS

A. Demand Limiting: Monitor total power consumption for each power meter and shed associated loads automatically to reduce power consumption to an operator set maximum demand level.

B. Duty Cycling: Periodically stop and start loads, based on space temperature, and according to various on/off patterns.

C. Automatic Time Scheduling: Self-contained programs for automatic start/stop/scheduling of building loads. Support up to seven (7) normal day schedules, seven (7) "special day" schedules and two (2) temporary schedules.

D. Optimal Start/Stop: Perform optimized start/stop as function of outside conditions, inside conditions, or both. Optimization shall be adaptive and self-tuning, adjusting to changing conditions by modifying occupancy period based upon the desired temperature at beginning and end of the occupancy period. Base optimization on occupancy schedules, outside air temperature, seasonal requirements, and interior room temperature. Employ adaptive model prediction for how long building takes to warm up or cool down under different conditions.

E. Night-Setback Program: Reduce heating space temperature setpoint or raise cooling space temperature setpoint during unoccupied hours in conjunction with scheduled start/stop and optimum start/stop programs.

F. Setpoint Reset: Setpoints for control of variable load systems shall be reset based on load demand, as described in the Sequence of Operations.

G. Calculated Points: Define calculations and totals computed from monitored points (analog/digital points), constants, or other calculated points.

H. Event Initiated Programming: Any data point capable of initiating event, causing series of controls in a sequence.

I. Holiday Scheduling

J. Direct Digital Control: Furnish software so operator is capable of customizing control strategies and sequences of operation by defining appropriate control loop algorithms and choosing optimum loop parameters.

K. Trend logging shall be provided for all points per the input/output summary where there is a change in the analog or binary signal. Each controller shall be capable of storing trend values and then automatically transfer data to the NAC or the NS hard disk. Trend data shall be updated continuously per the operator assigned interval at intervals as low as one minute. Collect samples at intervals specified in minutes, hours, days, or month. Output trend logs as line-graphs or bar graphs. Binary points (input and output) shall only be logged upon a change of value (COV). Display trend samples on workstation in graphic format. Automatically scale trend graph with minimum 60 samples of data in plot of time versus data.
2.5 FIELD INSTRUMENTATION

A. Temperature Sensors: All temperature sensors shall be thermistor type, factory-calibrated to within 0.5 °F, interchangeable with housing appropriate for application. Sensors shall have a temperature curve rated for the application. Sensor wiring terminations shall be in a galvanized box.

1. Outside air temperature sensors shall be installed in weather proof enclosure with ventilated sun-shied.
2. Duct mounted temperature sensors shall be averaging type for supply air, mixed air and low temperature applications for air handling units. Duct probe temperature sensor shall be acceptable for terminal units.
3. Space temperature sensors shall contain a backlit LCD digital display and user function keys along with temperature sensor, setpoint adjustment and after-hours override use. Override time may be set in one-hour increments.
4. Thermowell temperature sensors shall be stainless steel probe of length that is equivalent to a minimum of 50% of the pipe diameter. End-to-end accuracy shall be ± 0.5 deg. F. Connection box shall be moisture/water proof with conduit fitting. Furnish the stainless steel thermowell to the mechanical contractor for installation. A thermal conducting grease shall be installed in the thermowell to provide uniform temperature sensing.
5. Provide flat plate stainless steel space temperature sensors with no local setpoint adjustment as indicated on the drawings.

B. Carbon Dioxide Sensors: The sensor shall be capable of monitoring carbon dioxide concentration with an accuracy of +/- 30 parts per million (PPM). The sensor shall produce a linear 0-10 VDC or 4-20 mA signal over the range of 0 to 2000 PPM. The sensor shall measure using non-dispersed infrared (NDIR) technology to measure carbon dioxide gas and shall be;

1. Wall mounted carbon dioxide sensors shall be Veris CWE series or equivalent.
2. Duct mounted carbon dioxide sensor shall be Veris CWD series or equivalent.
3. The EMCS contractor shall utilize the required calibration devices to properly commission and calibrate the sensors per the manufacturer’s requirements.

C. Relative Humidity Sensors: relative humidity sensors shall be a two-wire type, 4-20 mA output proportional to the relative humidity range of 0-100%. The accuracy of the sensors shall be +/- 2% over a range of 10-90% RH.

1. Outdoor relative humidity sensors: provide non-corroding outdoor shield to minimize wind effects and solar heating. Install wall-mount weather proof enclosure with conduit fitting. Sensor shall be Veris HO series, or equivalent.
2. Wall-mounted relative humidity sensor: sensor shall be installed in a wall-mounted enclosure with white cover. Sensor shall be Veris HEW series or equivalent.
3. Duct-mounted relative humidity sensor: sensor shall be provided with a moisture resistant enclosure with conduit fitting. The probe length shall be 8” minimum. Sensor shall be Veris HED series or equivalent.

D. Pressure Transducers:

1. Air pressure sensor: The pressure sensors shall have an input range compatible with the medium being measured. The proportional output signal shall be 0-10 VDC or 4-20 mA. The accuracy shall be +/- 0.25% FS. Sensor shall be SETRA Model 264 or equivalent.
2. Water pressure sensors: The pressure sensors shall have an input range compatible with the medium being measured. The proportional output signal shall be 0-10 VDC or 4-20 mA. The accuracy shall be +/- 0.25% FS. Sensor shall be SETRA Model 230 or equivalent. Sensor shall be installed with a valved piping bypass and bleed off for each port.

E. Freezestat: Provide freezestats for all chilled water air handling systems that receive more than 10% untreated outside air. Freezestats shall provide vapor tension elements, which shall serpentine the inlet face on all coils. Provide additional sensors, wired in series, to provide one linear foot per square foot of coil surface area. Freezestat shall be manually reset at the switch. Interlock to the associated fan so that fan will shut down when HOA switch is in hand or auto
position. Provide time delay relays with a 0-10 minute time delay relay duration to minimize nuisance freezestat trips. Time delay relay shall be adjustable at the associated control panel.

F. Air differential pressure switch: For fan shutdown, provide air differential pressure switches for all fans controlled by a variable frequency drive (VFD) to shut down the associated fan in the event of sensing high differential pressure. Air differential pressure switches shall have an adjustable setpoint with a range of 0-10 inches w.g. with manual reset at the switch. Provide ¼ inch copper tubing with compression fittings to mount to the side of the duct. Sensor shall be DWYER Series 1900 or equivalent.

G. Momentary control relays: Provide momentary control relays as indicated. Relays shall have coil ratings of 120 VAC, 50 mA or 10-30 VAC/VDC, 40 mA as suitable for the application. Contact ratings shall be 10 amp. Provide complete isolation between the control circuit and the digital output. Relays shall be located in the UC or other local enclosures and have pin-type terminals. Relays shall have LED indication of status.

H. Current sensing relay: Current sensing relays shall be rated for the applicable load. The output relay shall have an accessible trip adjustment over its complete operating range. Enclosure shall have an LED to indicate relay status.

I. Photocell: Ambient light level shall by a photocell in a non-corroding in a weatherproof housing with sun shield suitable for exterior installation. The control signal output shall be 4-20 ma or binary contact closure as specified in the sequences of operation. Mount the photocell on the north side of the building on the roof. The sensor reading shall be 0-750 foot-candles.

J. Occupancy Sensors

1. Occupancy sensors shall be dual-technology, ceiling mounted type. Sensors shall be capable of detecting presence in the control area by via Doppler shifts in transmitted ultrasound and passive infrared (PIR) heat changes. Sensor shall utilize Dual Sensing Verification Principle for coordination between ultrasonic and PIR technologies. Detection verification of both technologies must occur in order to activate lighting systems. Sensor shall have a retrigger feature in which detection by either technology shall retrigger the lighting system on within 5 seconds of being switched off. The sensor shall operate at 24 VDC/VAC. WattStopper DT-300 or approved equal.

2. Sensors shall have a time delay that is adjustable with configuration software or shall have a fixed time delay of 5 to 30 minutes, set by a DIP switch. Sensors shall feature a walk-through mode, where lights turn off 3 minutes after the area is initially occupied if no motion is detected after the first 30 seconds.

3. The sensor shall have an additional single-pole, double throw isolated relay with normally open, normally closed and common outputs. The isolated relay is for use with HVAC control, data logging, and other control options. The sensor shall have an LED indicator that remains active at all times in order to verify detection within the area to be controlled.

2.6 WATER FLOW METERS

A. Insertion Electromagnetic Flow Meters shall be provided for HVAC metering and domestic water metering applications where indicated on mechanical drawings or in control diagrams in piping larger than 1 inch. The flow meter shall have a 316L stainless steel insertion probe with XAREC sensor head and weather-tight NEMA 4 electronics enclosure; +/- 1.0 % accuracy of actual reading from 2 to 20 ft/s and +/- 0.02 ft/s below 2 ft/s; flow range of 0.1 ft/s to 20 ft/s, turndown ratio of 200:1; pulse outputs proportional to flow rate. All wetted materials used in domestic water metering applications shall be NSF 61 and 372 compliant. The flow meter shall be installed with a minimum of 10 diameters of straight pipe upstream and 5 diameters of straight pipe downstream. Refer to meter manufacturer's installation manual for additional straight pipe length requirements. Provide full port valve to allow for removal and re-insertion without disruption to the water service. Meters provided for HVAC applications shall be furnished and installed by Division 23. Meters provided for Domestic water applications shall be furnished by Division 23 and installed by Division 22. Meter shall be ONICON F-3500 series or pre-approved substitution. Domestic water flow meters shall be approved by the associated Municipal Utility District (MUD).
B. Inline Wetted Ultrasonic Flow Meters shall be provided for cooling tower make-up water metering and blow down metering applications in piping ranging from ½" to 2 ½". The flow meter shall consist of a drop forged corrosion resistant metal flow body with process connections, integral transducers, transmitter with LCD display and user interface. All wetted materials shall be NSF 372 compliant; +/- 1.0 % accuracy of actual reading over a 25:1 turndown ratio; overall flow range turndown of 500:1; pulse and analog outputs proportional to flow rate and native BACnet MS/TP. Contractor shall provide a y-strainer upstream of each meter and isolation valves upstream and downstream of each meter. Placement of the flow meter must meet or exceed the manufacturer's published placement requirements. Meters shall be furnished and installed by Division 23. Meter shall be ONICON F-4600 or pre-approved substitution. Cooling tower meters shall be approved by the associated Municipal Utility District (MUD).

2.7 CONTROL VALVES

A. Furnish all valves controlled by the EMCS as shown on the Mechanical Drawings. Furnish all automated isolation valves as shown on the Mechanical Drawings. Control valves shall be factory fabricated of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated. EMCS contractor to size control valve with a maximum of 3 psi pressure drop. 2-position isolation valves shall be full-line size.

1. All chilled water, condenser water, and hot water valves shall meet, at minimum, the following ANSI Class 150 ratings. Valves 0.5 inch to 2 inches shall have NPT female screwed ends. Valves 2.5 inches and larger shall have flanged ends.

2. Equal Percentage control characteristic shall be provided for all water coil control valves.

B. Pressure Independent Characterized Control Ball Valves ½" to 6", for two-way modulating applications shall have equal percentage characteristics and control the flow from 0 to 100% full rated flow with an operating pressure differential range of 5 to 50 PSI across the valve. The pressure independent control valve shall be provided and delivered from a single manufacturer as a complete assembly. The actuator shall be integrally mounted to the valve at the factory with a single screw on a direct coupled DIN mounting-base. All valve actuators shall be capable of being electronically programmed in the field by use of external computer software or a dedicated handheld tool for the adjustment of flow and/or temperature control. Programming using actuator mounted switches or multi-turn actuators are not acceptable. The control valves shall be sized for the scheduled flow and not pressure drop. Calibrated Balancing Valves and Automatic Flow Control Valves shall be prohibited from use at coil circuit piping where pressure independent control valves are installed. Contractor shall provide a section of straight pipe five times the pipe diameter with respect to the nominal valve size upstream of the control valve assembly where utilizing integral flow sensor to guarantee sensor accuracy.

1. NPS 3/4" and Smaller: Belimo PIQCV or equal. Forged brass body rated at no less than 360 PSI, stainless steel ball and blowout-proof stem, characterizing disc integral to ball, PTFE ball seat, dual EPDM lubricated O-rings, and female NPT union ends. Close off pressure rating of 100 psi. Integral pressure regulator located upstream of ball to maintain a constant pressure differential. Replaceable cartridge type regulators are not permitted.

2. NPS 1" through 2": Belimo ePIV or equal. Forged brass, nickel-plated body rated at no less than 360 PSI, stainless steel ball and blowout-proof stem, PTFE ball seat, dual EPDM lubricated O-rings, stainless steel or TEFZEL characterizing disc, and female NPT union ends. Close off pressure rating of 200 psi. Valve shall be integrated with an electronic (ultra-sonic or electromagnetic) flow sensor (accuracy +/- 2%) providing analog flow feedback. The valve shall reposition to maintain the required flow with a +/- 5% accuracy over a pressure differential range of 1 to 50 psi.

3. NPS 2-1/2" through 6": Belimo ePIV or equal. GG25 cast iron body according to ANSI 125, Class B, stainless steel ball and blowout-proof stem, PTFE ball seat, with a dual EPDM lubricated O-rings and a stainless steel flow characterizing disc. End connection pattern to match ANSI 125 flange. Close off pressure rating of 100 psi. Valve shall be integrated with an electronic (ultra-sonic or electromagnetic) flow sensor (accuracy +/- 2%) providing analog flow feedback. The valve shall reposition to maintain the required flow with a +/- 5% accuracy over a pressure differential range of 1 to 50 psi.

C. Characterized Control Ball Valves (CCV) for ½" to 2": for 3-way modulating applications shall have equal percentage characteristics. Manufacturer shall be Belimo or approved equal.
1. Valve housing shall consist of forged brass rated at no less than 400 psi at 250 °F. Three-way valves shall have EPDM O-rings behind ball seals to allow for a minimum close-off pressure of 40 psi with an actuator that provides 35 in-lbs torque for ½ to 2 in. sizes. Three-way valves shall be installed in a “tee” configuration with actuator perpendicular to the shaft. Confirm mixing or diverting application for correct valve selection.

D. Globe Valves 2-1/2” to 6”: for 3-way modulating applications shall have equal percentage characteristics. Manufacturer shall be Belimo G7 series or approved equal.

1. Valve housing shall consist of cast iron rated at no less than 125 psi at 300 °F. Valve shall have stainless steel stem, plug and seat. Three-way valves shall be installed in a “tee” configuration with actuator perpendicular to the shaft. Confirm mixing or diverting application for correct valve selection.

E. Butterfly valves: For chiller and cooling tower isolation control valves, butterfly control valves may be provided.

1. Butterfly Isolation valves shall be line-size. Design velocity shall be less than 12 feet per second when used with standard EPDM seats. Butterfly valves shall have ductile iron body, 304 stainless steel disc and EPDM seat. The valve body close-off pressure rating shall be 150 psi over a range of -20 F to 250 F. The flange shall be ANSI 125/250. Belimo F6 and F7 series or approved manufacturer.

F. Actuators for characterized control valves and globe valves: Provide electric actuators for all control valves that are furnished as part of the EMCS contract. Two-way and three-way control valve actuators shall meet, at minimum, the following requirements:

1. Motor driven type with gear assembly made of hardened steel. Actuator shall have an input voltage of 24 VAC. Provide visual mechanical position indication.
2. Actuators installed within the interior of the building envelope shall be provided with NEMA-2 rated housings.
3. Actuators installed exterior to the building envelope shall be provided with NEMA-4 rated housings or a weather shield. All penetrations through exterior actuator housings shall be provided with fittings that prevent water ingress.
4. Valves shall be sized to meet the shut-off requirements when operating at the maximum system differential pressure and with the installed system pump operating at shut-off head. Actuators shall control against system maximum working pressures.
5. Normal and failure positions shall be as indicated in the operating sequences. Provide spring return action per the sequences.
6. Manual declutch lever to enable manual operation of the valve. It shall be possible for an operator to manually modulate valves located in mechanical rooms in the event of loss of power.
7. Overload Protection: Actuators shall provide protection against actuator burnout by using an internal current limiting circuit or digital motor rotation sensing circuit. Circuit shall insure that actuators cannot burn out due to stalled damper or mechanical and electrical paralleling. End switches to deactivate the actuator at the end of rotation are acceptable only for butterfly valve actuators.
8. All actuators shall be capable of being electronically programmed in the field by use of external computer software or a dedicated handheld tool for the adjustment of flow. Programming using actuator mounted switches or multi-turn actuators are not acceptable.
9. Electric actuators shall be Belimo, compatible with the valves furnished.

G. Butterfly Valve Industrial Actuators

1. Enclosure shall be NEMA 4 (weatherproof) enclosure and will have an industrial quality coating.
2. Actuator shall have a motor rated for continuous duty. The motor shall be fractional horsepower; permanent split capacitor type designed to operate on a 120 VAC, 1 phase, 60 Hz supply. Two adjustable cam actuated end travel limit switches shall be provided to control direction of travel. A self-resetting thermal switch shall be imbedded in the motor for overload protection.
3. Reduction gearing shall be designed to withstand the actual motor stall torque. Gears shall be hardened alloy steel, permanently lubricated. A self-locking gear assembly or a brake shall be supplied.

4. Actuator shall have a 6 ft wiring harness provided for ease in field wiring (above 1500 in-lbs). Two adjustable SPDT cam-actuated auxiliary switches, rated at 250 VAC shall be provided for indication of open and closed position. Actuator shall have heater and thermostat to minimize condensation within the actuator housing.

5. Actuator shall be equipped with a hand wheel for manual override to permit operation of the valve in the event of electrical power failure or system malfunction. Hand wheel must be permanently attached to the actuator and when in manual operation electrical power to the actuator will be permanently interrupted. The hand wheel will not rotate while the actuator is electrically driven.

6. The actuator shall be analog, floating, or two position as called out in the control sequence of operation. All analog valves shall be positive positioning, and respond to a 2-10 VDC, 4-20 mA, or adjustable signal as required. Analog actuators shall have a digital control card allowing any voltage input for control and any DC voltage feedback signal for position indication.

7. Butterfly valve actuators shall be Belimo furnished with specified butterfly valves.

2.8 PANELS AND ENCLOSURES

A. Provide panels and enclosures for all components of the EMCS, which are susceptible to physical or environmental damage.

B. Interior panels and enclosures shall meet be NEMA 1 rated painted steel panels with locking door.

C. Exterior mounted panels and enclosures shall be NEMA 4 painted steel panels with locking door.

D. Panels for USCs shall be mounted on the outside of all unit ventilators and fan coil units with three feet of wall clearance in front of them and no higher than 7 feet to the bottom of the panel.

2.9 LABELING AND WARNING NOTICES

A. Provide labeling for all control panels and enclosures.

B. Provide labeling of all control wires and input/output points at the controller and at the control device; the label at each end of the wire shall be the same Labels shall be machine generated, typed and clearly legible with a maximum of 17 characters. Hand written labels or labels written on the control wire jacket will not be acceptable. Each label shall be unique to its function and shall reference the applicable system. For example "AHU-1 SAT" will indicate the supply air temperature sensor for AHU-1. Improper labeling shall be removed and shall require re-commissioning of the control device and controller to document correct functionality.

C. Provide high voltage warning notices at all equipment controlled by the EMCS and at all associated motor starters when used by equipment controller.

2.10 TUBING AND PIPING

A. Provide tubing and piping as required for the field instrumentation.

B. Tubing within equipment rooms, vertical risers, and penetrations to ductwork shall be either copper pipe or shall be plastic tubing within conduit. Tubing for all water-based instrumentation shall be copper pipe. Identify the type of tubing proposed in the shop drawing submittal.

C. Provide suitable bulk head fittings for duct and panel penetrations.

D. Tubing in plenum rated areas may be plastic tubing. Polyethylene tubing shall meet, at minimum, the following requirements: flame retardant; crack resistant; 300 psi burst pressure.

2.11 CONDUIT AND FITTINGS
A. Provide all conduits, raceways and fittings for the EMCS monitoring, communication and control cabling. All work shall meet all applicable codes.

B. Conduit, where required, shall meet, the requirements specified within Division 26.

C. EMCS monitoring and control cable shall not share conduit with cable carrying voltages in excess of 90 VAC.

2.12 CABLING

A. Provide all cables for the EMCS. Cable shall meet, at minimum, the following requirements:

1. Minimum 98% conductivity stranded copper.
2. Proper impedance for the application as recommended by the EMCS component manufacturer.
3. Monitoring and control cable shall be #18 AWG or larger, dependent on the application. Analog input and output cabling shall be shielded.
4. Management Level Network cable shall be CAT 6, 24 gauge unshielded.
5. Automation Level Network cable shall be #24 AWG shielded.
6. Shield shall be grounded at the CCP, UC, or control panel. Ground at one end only to avoid ground loops.
7. Identification of each end at the termination point. Identification should be indicated on and correspond to the record drawings.

B. 120 VAC power wiring shall be of #12 AWG solid conductor or larger as required.

PART 3 - EXECUTION

3.1 PRE-CONSTRUCTION

A. The EMCS supplier shall provide a pre-construction coordination meeting with the affected trades to ensure a cooperative efficient process of installation. The invited trades shall include the general contractor, mechanical contractor, electrical contractor, test and balance contractor, commissioning provider, owner’s representative, consulting engineer and others with a direct interest in the coordination of the affected systems. The EMCS contractor shall provide an outline of the meeting agenda highlighting the construction schedule, coordination with mechanical and electrical trades. Provide a sign-in sheet and submit it through the attendees along with a summary of the meeting notes for future reference.

3.2 INSPECTION DURING INSTALLATION

A. Provide a technician to assist the Engineer or Owner’s Representative with inspections made during the installation period that are required to review the progress and quality of ongoing work. The engineer/owner’s representative shall generate field observation reports on the findings of the inspection. The engineer or owner’s representative shall advise the EMCS contractor during the inspection of any concerns noted with respect to the installation and shall repeat the concerns in writing as soon as possible after the inspection is completed. The EMCS contractor shall take corrective action to meet the requirements of the specifications. Upon correction, the EMCS contractor shall submit written documentation through the contractors to the engineer.

3.3 INSTALLATION OF COMPONENTS

A. Provide all interlock and control wiring. All wiring shall be installed in a neat and professional manner in accordance with specification Division 26 and all national, state and local electrical codes.

B. Provide wire and wiring techniques recommended by equipment manufacturers. Control wiring shall not be installed in power circuit raceways. Magnetic starters and disconnect switches shall not be used as junction boxes. Provide auxiliary junction boxes as required. Coordinate location and arrangement of all control equipment with the Owner’s Representative prior to rough-in.
Provide auxiliary pilot duty relays on motor starters as required for control function.

C. Electrical Contractor shall provide 120 or 277 volt power at a junction box within 48" of the controller. The BAS Contractor shall coordinate with the Electrical Contractor to identify locations of power requirements prior to the installation of the controls.

D. Conduit for control wiring shall be provided whenever one of the following conditions exists:

1. Conduit is indicated on the drawings or specifically required by the specifications.
2. Cabling runs through inaccessible areas such as within partitions/walls, above closed in ceilings, under floor; within trenches and underground; on the exterior of the building; exposed on the surface of the building; when encased in concrete or other material that makes the cable inaccessible or when located such that access to the cable is not readily obtained.
3. Cable within mechanical, telecommunications and electrical equipment rooms and control rooms.
4. Conduit shall be installed, inside wall from sensor box to above the wall, for all wall mounted temperature, humidity and CO2 sensors.

E. Control wiring located above an accessible ceiling space may be plenum rated cable. Plenum rated wire shall be bundled and routed at right angles to the building lines and secured to the building structure every 15 feet.

F. Control wiring located in underground conduits shall be provided with direct-burial-rated insulation.

G. When communication bus enters or exits a building, a surge suppressor shall be installed. The surge suppressor shall be installed according to the controls manufacturer’s instructions.

H. Provide sleeves for all cable and conduit passing through walls, partitions, structural components, floors and roof.

I. All sensor wiring shall be labeled to indicate the origination (at the device) and destination of data (at the control panel). The description shall indicate the type and location of the control device such as “AHU-1 SA temp” or “VAV 1-1 space temp”.

J. Wall temp sensors at 48" above the finished floor to comply with ADA requirements and to match the height of the light switches. Mount humidity sensor at equal height to wall temperature sensor.

3.4 VERIFICATION REQUIREMENTS

A. Verification shall be provided by the EMCS contractor to demonstrate and confirm that the installed system complies with the specifications and the control sequences of operation herein specified. Upon completion of the verification process the EMCS contractor shall demonstrate to the engineer or owner’s representative the functionality of the control system devices are in compliance with the contract documents.

B. Technicians provided by the EMCS contractor shall be factory trained and qualified in the operation of the provided control system. The EMCS contractor shall provide, if requested, the factory training certificates of the individuals providing the verification services on this project.

C. Verification tools, applicable to the system provided, shall be utilized by the factory-trained technicians for proper verification of system operation and functionality. Temperature verification sensors shall be NIST certified within the last 12 months. Meters such as Fluke 52 series or better shall be utilized. Use of non-certified meters may require the system to be re-verified with certified meters at no cost to the owner.

D. Documentation of the verification process shall be provided per the project general conditions in electronic PDF format as required. Documentation shall include the following forms:

1. Project System Verification Forms for each controller provided on the project to verify the proper function of each controller, control device and system component provided.
2. Panel Verification Forms for each control panel to document the proper installation and function of each control panel provided.

3. Sequence of Operation Verification Forms for each piece of controlled equipment to confirm compliance of the control system with the specified sequences of operation.

4. Not providing proper documentation for each control device, panel, or system, upon request by the engineer or owner's representative, may require the EMCS contractor to re-verify the applicable systems at no additional cost to the owner.

E. After completion of the verification, the EMCS contractor shall be able to demonstrate the sequence of operations for each system to the engineer and the owner's representative.

F. Equipment checkout sheets are to be produced by this contractor showing checkboxes and compliance with the following procedures for each piece of equipment and turned over to the owner and/or mechanical engineer.

3.5 COLORGRAPHICS

A. The colorgraphics shall be provided for the EMCS system prior to system acceptance and owner training.

B. The colorgraphics provided shall include the following as a template. Provide forward and backward links on the graphic.

1. Site plan with link to overall building plan including detached buildings. The site plan shall be referenced to an automatically updated aerial view or map view of the area such as Google Maps or Bing Maps. Provide link to proceed to the overall building floor plan.

2. The overall building plan shall indicate space temperature conditions referenced by the color of the zone. Specific details of the zone temperatures and equipment are not required. Provide a link to the floor plan wings, upper floors and remote buildings.

3. The floor plan colorgraphics shall indicate the space temperatures by color references. Additional information shall indicate the space temperature, the occupancy of the zone, air handling units, VAV terminals and ductwork with diffusers. A link at each terminal unit or AHU shall automatically connect the system operator to the equipment colorgraphic.

4. The colorgraphics for the equipment shall as a minimum be equal to the points from the input/output summary or control schematic. Primary control devices as required by the sequences of operation shall also be provided.

5. Control points from equipment that are integrated into the EMCS via BACnet shall be provided to convey the operating conditions of the attached equipment. Coordination of the integration points shall be accomplished during the submittal phase. The EMCS contractor shall provide a list of all integrated points on their submittal.

3.6 CONTROL SYSTEM DEMONSTRATION AND ACCEPTANCE

A. Startup testing documentation: Prepare the checklist documenting startup testing of each input and output device, with technician's initials and date certifying each device has been tested and calibrated prior to acceptance testing. This document shall indicate proof that the following functions have been commissioned and shall be included in the as-built documentation: short to ground check, configuration of trends, confirmation that color-graphics are accurately representing actual systems, point to point checkout, all damper and valve actuators respond to input change, control modules are addressed and have functional descriptors, specified interlocks are functional, calibration report of all sensors, discrete outputs respond to time schedule or manual enable command.

B. Demonstration. Prior to acceptance, demonstrate the following performance tests to demonstrate system operation and compliance with specifications.

1. Engineer, owner's representative and mechanical contractor shall be invited to observe and review system demonstration. Provide attendees at least 10 days notice.

2. Demonstration shall follow process approved as part of the submittal and shall include complete checklists and forms for each system as part of system demonstration.

3. Demonstrate actual field operation of each sequence of operation as specified. Demonstrate calibration and response of any input and output points requested by
4. Demonstrate complete operation of operator interface including review of color-graphics, time schedules, trend logs, alarm notification, functionality of tablet PC operation.
 a. PID loop response. Supply graphical trend data output showing each PID loop's response to a set point change representing an actuator position change of at least 25% of full range. Trend sampling rate shall be selectable from 10 seconds to 3 minutes, depending on loop speed. Each sample's trend data shall show set point, actuator position, and controlled variable values.
 b. Demand limiting. Supply trend data output showing demand-limiting algorithm action. Trend data shall document action sampled each minute over at least a 30-minute period and shall show building kW, demand limiting setpoint, and status of set points and other affected equipment parameters.
 c. Trend logs for each system. Trend data shall indicate set points, operating points, valve positions, and other data as specified. Logs shall be accessible through system's operator interface and shall be retrievable for use in other software programs.

5. Alarms and Interlocks. Check each alarm with an appropriate signal at a value that will trip the alarm. Trip interlocks using field contacts to check logic and to ensure that actuators fail in the proper direction. Alarm verification shall include temperatures exceeding alarm threshold (high and low), fan failure safety, duct high static pressure switch, freezezstat, and smoke detector shutdown.

6. Tests that fail to demonstrate proper system operation to the engineer shall be repeated after contractor makes necessary repairs or revisions to hardware or software to successfully complete each test.

C. Owner Acceptance.

1. After tests described in this specification are performed to the satisfaction of both engineer and owner’s representative, the engineer shall accept the control system as meeting completion requirements. Engineer may exempt tests from completion requirements that cannot be performed due to circumstances beyond EMCS contractor's control. Engineer shall provide written statement of each exempted test. Exempted tests shall be performed as part of warranty.

2. System shall not be accepted until completed demonstration forms and checklists are submitted and approved by the engineer.

3.7 DEMONSTRATION AND OWNER TRAINING

A. Furnish basic operator training for multiple persons on data display, alarm and status descriptors, requesting data, execution commands and log requests. Include a minimum of 16 hours: 8 hours instructor time for onsite training and 8 hours of hands on class environment training. Training sessions may be provided in 4-hour increments as approved by the owner's representative.

2. Change/modify time of day, holiday and override schedules.
3. Display, create, and modify trends of system points.
4. Update room numbers on the color-graphics.

B. Demonstrate complete and operating system to Owner. Provide written documentation listing the attendees of the specified training with sign-in sheet and training time and date.

3.8 SEQUENCE OF OPERATIONS

A. Refer to the Mechanical Drawings for project control schematics and sequence of operations.

END OF SECTION
PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 WORK INCLUDED

A. Pipe and pipe fittings.

B. Flanges, unions, dielectric connections, and couplings

C. Valves.

D. Chilled water piping system.

1.3 RELATED WORK

A. Section 23 05 16 - Expansion Fittings and Loops for HVAC Piping

B. Section 23 05 29 - Hangers and Supports for Piping and Equipment - HVAC

C. Section 23 05 48 - Vibration and Seismic Controls for HVAC Piping and Equipment

D. Section 23 05 53 - Identification for HVAC Piping and Equipment

E. Section 23 07 19 - HVAC Piping Insulation

F. Section 23 21 16 - Underground Hydronic Piping

G. Section 23 21 19 - Hydronic Specialties

1.4 REFERENCES

B. ASME B16.3 - Malleable Iron Threaded Fittings: Classes 150 and 300.

C. ASME B31.1 - Power Piping.

D. ASME B31.3 - Process Piping.

E. ASME B31.9 - Building Services Piping.

F. ASME BPVC-IX - Boiler and Pressure Vessel Code, Section IX - Qualification Standard for Welding, Brazing, and Fusing Procedures; Welders; Brazers; and Welding, Brazing, and Fusing Operators.

G. ASSE 1079 - Performance Requirements for Dielectric Pipe Unions.

L. AWS D1.1/D1.1M - Structural Welding Code - Steel.

O. ASTM B32 - Solder Metal.

P. ASTM B88 - Seamless Copper Water Tube.

1.5 QUALITY ASSURANCE

A. Foreign made pipes, valves and fittings will not be acceptable.

B. Valves: Manufacturer's name and pressure rating marked on valve body.

C. Welding Materials and Procedures: Conform to ASME BPVC-IX and applicable state labor regulations.

D. Welder’s Certification: In accordance with ASME BPVC-IX.

1.6 SUBMITTALS

A. Submit product data under provisions of Division One.

B. Include data on pipe materials, pipe fittings, valves, and accessories.

C. Include welder’s certification of compliance with ASME BPVC-IX.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to site under provisions of Division One.

B. Store and protect products under provisions of Division One.

C. Deliver and store valves in shipping containers with labeling in place.

D. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.

E. Protect piping systems from entry of foreign materials by temporary covers, proper storage and dunnage, completing sections of the work, and isolating parts of completed system. Tape will not be allowed as an acceptable end cover.

PART 2 - PRODUCTS

2.1 CHILLED AND HEATING WATER [<>] PIPING
A. Steel Pipe: ASTM A53/A53M, Schedule 40, 0.375 inch wall for sizes 12 inch and over, black.

2.2 FLANGES, UNIONS, DIELECTRIC CONNECTIONS, AND COUPLINGS

A. Pipe Size 2 Inches and Under: Provide 150 psi malleable iron unions for threaded ferrous piping; bronze unions for copper pipe, soldered joints.

B. Pipe Size Over 2 Inches: Provide 150 psi forged steel slip-on flanges for ferrous piping; bronze flanges for copper piping; 1/16 inch thick preformed neoprene bonded gasket.

C. Dielectric connections for pipe sizes 2 inches and under: Provide dielectric unions, rated at 180°F at 250 psi in compliance with ASSE 1079.

D. Dielectric connections for pipe sizes larger than 2 inches: Provide dielectric flanged pipe fittings, rated to 180°F at 175 psi in compliance with ASME B16.1.

E. Grooved mechanical pipe couplings, fittings, valves and other grooved components may be used as an option to welding, threading or flanged methods. All grooved components shall be of one manufacturer, and conform to local code approval and/or is listed by ASME B31.1, ASME B31.3, ASME B31.9, ASME, UL/ULC, FM, IAPMO or BOCA. Grooved end manufacturer to be ISO-9001 certified. Grooved couplings shall meet the requirements of ASTM F1476. Manufacturer shall be Victaulic or approved equal. Can be utilized only in mechanical rooms or cooling tower areas.

2.3 ACCEPTABLE MANUFACTURERS - GATE VALVES

A. Milwaukee.
B. Crane.
C. Dezurik.
D. Nibco.
E. Substitutions: Under provisions of Division One.

2.4 GATE VALVES

A. Up to 2 Inches: Bronze body, bronze trim, rising stem, handwheel, inside screw, single wedge or disc, threaded ends.
B. Over 2 Inches: Iron body, bronze trim, rising stem, handwheel, OS&Y, single wedge, flanged ends.

2.5 ACCEPTABLE MANUFACTURERS - GLOBE VALVES

A. Milwaukee.
B. Nibco.
C. Stockham.
D. Dezurik.

2.6 GLOBE VALVES
A. Up to 2 Inches: Bronze body, bronze trim, rising stem and handwheel, inside screw, renewable stainless steel disc, screwed ends, with back seating capacity.

B. Over 2 Inches: Iron body, bronze trim, rising stem, handwheel, OS&Y, plug-type disc, flanged ends, renewable seat and disc.

2.7 ACCEPTABLE MANUFACTURERS - BALL VALVES

A. Milwaukee.

B. Nibco.

C. Jamesbury.

D. Dezurik.

E. IMI Flow Design.

F. Kitz.

G. Victaulic (For grooved systems only)

2.8 BALL VALVES

A. Up to 2 Inches: Bronze two-piece body, 600 PSI full port, stainless steel ball and stem, teflon seats and stuffing box ring, lever handle, and balancing stops, threaded ends.

B. Over 2 Inches: Cast steel body, chrome plated steel ball, teflon seat and stuffing box seals, lever handle, or gear drive hand wheel for sizes 10 inches (250 mm) and over, flanged.

C. Ball valves installed in insulated lines shall have stem extensions compatible with up to 2” of insulation. Extensions shall be non-metallic equal to Nibco “nib-seal”.

2.9 ACCEPTABLE MANUFACTURERS - PLUG COCKS

A. Nibco.

B. Jenkins.

C. Dezurik.

D. Milwaukee.

2.10 PLUG COCKS

A. Up to 2 Inches: Bronze body, bronze tapered plug, non-lubricated, teflon packing, threaded ends, with one wrench operator for every ten plug cocks.

B. Over 2 Inches: Cast iron body and plug, pressure lubricated, teflon packing, flanged ends, with wrench operator with set screw.

2.11 ACCEPTABLE MANUFACTURERS - BUTTERFLY VALVES

A. Milwaukee.

B. Nibco.

C. WECO.
D. Dezurik.
E. IMI Flow Design.
F. Victaulic (For grooved systems only)
G. Substitutions: Under provisions of Division One.

2.12 BUTTERFLY VALVES
A. Iron body, aluminum bronze or stainless steel disc, resilient replaceable seat for service to 180 degrees F lug or grooved ends, extended neck, infinite position lever handle with memory stop. Valve shall be rated at full working pressure with downstream flange removed in either direction.

2.13 ACCEPTABLE MANUFACTURERS - SWING CHECK VALVES
A. Milwaukee.
B. Nibco.
C. Stockham.
D. Dezurik.
E. Victaulic (For grooved systems only)
F. Substitutions: Under provisions of Division One.

2.14 SWING CHECK VALVES
A. Up to 2 Inches: Bronze 45 degree swing disc, screwed ends.
B. Over 2 Inches Iron body, bronze trim, 45 degree swing disc, renewable disc and seat, flanged or grooved ends.

2.15 ACCEPTABLE MANUFACTURERS - SPRING LOADED CHECK VALVES
A. Milwaukee.
B. Nibco.
C. Mueller.
D. Dezurik.
E. Victaulic (For grooved systems only)
F. Substitutions: Under provisions of Division One.

2.16 SPRING LOADED CHECK VALVES
A. Iron body, bronze trim, stainless steel spring, aluminum bronze disc, screwed, grooved, wafer or flanged ends.

2.17 ACCEPTABLE MANUFACTURERS - RELIEF VALVES
A. Nibco.
B. Jenkins.
C. Dezurik.
D. Milwaukee.
E. Substitutions: Under provisions of Division One.

2.18 RELIEF VALVES
A. Bronze body, teflon seat, stainless steel stem and springs, automatic, direct pressure actuated, capacities ASME certified and labeled.

PART 3 - EXECUTION

3.1 PREPARATION
A. Ream pipe and tube ends. Remove burrs. Bevel plain end ferrous pipe.
B. Remove scale and dirt on inside and outside before assembly.
C. Prepare piping connections to equipment with flanges or unions.
D. After completion, fill, clean, and treat systems.
E. Provide extended necks for all vents, thermometer wells, pressure gauge wells, pet cocks and pete's plugs.

3.2 INSTALLATION
A. Route piping in orderly manner, plumb and parallel to building structure, and maintain gradient.
B. Install piping to conserve building space, and not interfere with use of space and other work.
C. Group piping whenever practical at common elevations.
D. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment. Refer to Section 23 05 16 - Expansion Fittings and Loops for HVAC Piping.
E. Provide clearance for installation of insulation, and access to valves and fittings.
F. Provide access where valves and fittings are not exposed. Coordinate size and location of access doors with Division 08.
G. Slope piping and arrange systems to drain at low points. Use eccentric reducers to maintain top of pipe level.
H. Where pipe support members are welded to structural building framing, scrape, brush clean, and apply one coat of zinc rich primer to welds.
I. Prepare pipe, fittings, supports, and accessories for finish painting. Refer to Division 09.
J. Install valves with stems upright or horizontal, not inverted.
K. All grooved components (couplings, fittings, valves, gaskets, and specialties) shall be of one manufacturer.
L. Grooved manufacturer shall provide on-site training for contractor’s field personnel by a factory
trained representative in the proper use of grooving tools, application of groove, and the product
installation. Factory trained representative shall periodically visit the job site and inspect installation.
Contractor shall remove and replace any improperly installed products.

3.3 APPLICATION

A. Use grooved mechanical couplings and fasteners only in mechanical rooms or cooling tower area.
B. Install unions downstream of valves, and at equipment or apparatus connections.
C. Provide non-conducting dielectric connections wherever joining dissimilar metals.
D. Install brass male adapters each side of valves in copper piped system. Sweat solder adapters to
pipe.
E. Install ball valves for shut-off and to isolate equipment, part of systems, or vertical risers.
F. Install plug valves for throttling, bypass, or manual flow control services.
G. Provide spring loaded check valves on discharge of condenser and chilled water pumps.
H. Use plug cocks for throttling service. Use non-lubricated plug cocks only when shut-off or isolating
valves are also provided.
I. Use only butterfly valves in condenser water systems for throttling and isolation service.
J. Use lug end butterfly valves to isolate equipment.
K. Provide chain operated butterfly valve for installations at 12 feet or higher.
L. Provide 3/4-inch ball (drain) valves equal to Nibco T-585-70-HC at main shut-off valves, low points
of piping, bases of vertical risers, and at equipment and pipe to nearest drain.
M. Provide automatic air vents at all high points and air pockets in the system.

3.4 PIPE FABRICATION AND INSTALLATION

A. All pipes shall be cut accurately to measurements established at the site and shall be worked into
place without springing or forcing.
B. Piping layout and installation shall be made in the most advantageous manner possible with
respect to headroom, valve access, opening and equipment clearance, and clearance from other
work. Particular attention shall be given to piping in the vicinity of equipment; layout shall be made
in such manner as to preserve maximum access to the various equipment parts for maintenance.
C. All changes in directions shall be made with fittings; field bending and mitering of pipe is prohibited.
D. Air vents and air chambers shall be installed as hereinafter specified.

3.5 OFFSETS AND FITTINGS

A. Due to the small scale of the Drawings, it is not possible to indicate all offsets, fittings, etc. which
may be required. The Contractor shall carefully investigate structural and finish conditions affecting
the Work, and shall take such steps as may be required to meet such conditions at no additional
cost to the Owner.
B. All piping shall be installed close to walls, ceilings and columns, (consistent with the proper space for covering, removal of pipe and special clearances), so as to occupy the minimum of space, and all offsets, fittings, etc., required shall be provided at no additional cost to the Owner.

3.6 SECURING AND SUPPORTING

A. All piping shall be adequately supported to line and grade, with due provisions for expansion and contraction.

B. Piping shall be supported on approved clevis type, split ring, or trapeze type hangers properly connected to the structural members of the building.

C. All insulated piping shall be fitted with suitable steel protection saddles.

D. Perforated bar hangers, straps, wire or chains will not be permitted.

3.7 ISOLATION VALVES

A. All piping systems shall be provided with line size shut-off valves located at risers, at branch connections to mains, and at other locations as indicated and required.

3.8 TESTING OF PIPING SYSTEMS

A. During the progress of the Work and upon completion, tests shall be made as specified herein and as required by Authorities Having Jurisdiction, including Inspectors, Owner or Engineer. The Engineer or duly authorized Construction Inspector shall be notified in writing at least 2 working days prior to each test or other Specification requirement which requires action on the part of the Construction Inspector.

B. Tests shall be conducted as part of this Work and shall include all necessary instruments, equipment, apparatus, and service as required to perform the tests with qualified personnel. Submit proposed test procedures, recording forms, and test equipment for approval prior to the execution of testing.

C. Tests shall be performed before piping of various systems have been covered or furred-in. For insulated piping systems, testing shall be accomplished prior to the application of any insulation.

D. All piping systems shall be tested and proved absolutely tight for a period of not less than 24 hours at a pressure of 150 psi(g) or 150% of design pressure, whichever is greater. Tests shall be witnessed by the Engineer or an authorized representative and pronounced satisfactory before pressure is removed or any water drawn off.

E.Leaks, damage or defects discovered or resulting from test shall be repaired or replaced to a like new condition. Leaking pipe joints, or defective pipe, shall be removed and replaced with acceptable materials. Test shall be repeated after repairs are completed and shall continue until such time as the entire test period expires without the discovery of any leaks, damage, or defects.

F. Wherever conditions permit, each piping system shall thereafter be subjected to its normal operating pressure and temperature for a period of no less than five 5 days. During that period, it shall be kept under the most careful observation. The piping systems must demonstrate the propriety of their installation by remaining absolutely tight during this period.

3.9 PIPE CLEANING, FLUSHING AND PURGING REQUIREMENTS AND PROCEDURES

A. The hydronic system shall be flushed and purged by contractor:

1. All mains, branches and zones shall be cleaned and treated per steps indicated below.
2. Owner/Engineer shall be given 72-hour notice prior to each step being performed.
B. Pre-flush requirements: Purpose is to get system ready for flushing and purging:

1. Piping must pass all required pressure testing and visual inspection for leaks.
2. All pumps shall be tested for rotation and properly aligned and lubricated.
3. Chemicals planning on being used must have certificate of assurance and product cut sheets presented to the owner/engineer prior to being used. All chemicals must be approved by the state prior to being added to the system, FDA approved and meet ASTM D1384. Automotive grade chemicals are not allowed.
4. Bypass all coils and heat exchangers by connecting the supply and return piping together.
5. Fill entire system with clean fresh potable water.

C. The flush requirements: Purpose is to completely remove all debris, dirt and air from hydronic system.

1. Add system cleaner that contains detergent and emulsifying agents to properly remove grease, grime and other debris for steel pipe. Volume of cleaner used shall be about 10% of total volume.
2. System shall be circulated for a minimum of 48 hours with water velocities of a minimum of 5 ft/sec or greater. After completed all strainers shall be removed and cleaned thoroughly. House pumps are acceptable to circulate water. House pumps or pump seals that are damaged during the flushing process shall be replaced at no cost to the Owner.
3. The system shall be entirely drained and flushed out to remove all of the cleaner from the system as quickly as possible after cleaning to prevent debris from settling. All strainers shall be removed and thoroughly cleaned after no more dirt and cleaner is visible in the flushing water as it leaves the system.

D. Final fill:

1. All air vents shall be opened to allow air to escape during filling.
2. Reconnect all flex connections to equipment.
3. System shall be drained and filled with a local domestic/softened water mixture as required by chemical treatment supplier. System shall be filled with pressure reducing valve at the specified fill pressure.

E. Purging: Purpose is to remove all air from the system:

1. System shall be circulated for a minimum of one hour with water velocities of a minimum of 5 ft/sec or greater until all visible air is removed.

F. Final chemical addition: Purpose is to install chemicals during inhibitor as required:

1. After the above final fill and purging has been completed and accepted by the engineer/owner the final chemical addition can be done.
2. Chemical treatment shall be added to the system after thoroughly mixing water per the manufacturer’s recommendations. Chemical treatment shall include inhibitors. Quantities and concentrations of inhibitor/chemicals should be applied per the manufacturer’s specifications and approval submittals.
3. System water shall be tested for chemical inhibitor concentrations, reserve alkalinity and PH. Reports shall be submitted to engineer/owner.
4. All records and documentation shall be kept and given to the owner upon completion.

END OF SECTION
PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 WORK INCLUDED

A. Air vents.

B. Strainers.

C. Pump suction fittings.

D. Flow indicators, controls, meters.

E. Radiator valves.

F. Relief valves.

G. Pressure and temperature test plugs.

1.3 RELATED SECTIONS

A. Section 23 21 13 - Above Ground Hydronic Piping

B. Section 23 21 16 - Underground Hydronic Piping

C. Section 23 21 23 - Hydronic Pumps

D. Section 23 05 29 - Hangers and Supports for Piping and Equipment - HVAC

1.4 REFERENCES

A. ASME BPVC-VIII-1 - Boiler and Pressure Vessel Code, Section VIII, Division 1: Rules for Construction of Pressure Vessels.

1.5 QUALITY ASSURANCE

A. Manufacturer: For each product specified, provide components by same manufacturer throughout.

B. Conform to ASME BPVC-VIII-1 for manufacturer of tanks.

1.6 OPERATION AND MAINTENANCE DATA

A. Submit operation and maintenance data under provisions of Division One.

B. Include installation instructions, assembly views, lubrication instructions, and replacement parts list.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Deliver products to site under provisions of Division One.

B. Store and protect products under provisions of Division One.

1.8 OPERATIONS PERSONNEL TRAINING

A. Provide a training session for the owner’s operations personnel. Training session shall be performed by a qualified person who is knowledgeable in the subject system/equipment. Submit a training agenda two (2) weeks prior to the proposed training session for review and approval. Training session shall include at the minimum:

1. Purpose of equipment.
2. Principle of how the equipment works.
3. Important parts and assemblies.
4. How the equipment achieves its purpose and necessary operating conditions.
5. Most likely failure modes, causes and corrections.
6. On site demonstration.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS - AIR VENTS

A. Armstrong.

B. Bell and Gossett/ITT Hoffman.

C. IMI Flow Design.

2.2 AIR VENTS

A. Manual Type: Short vertical sections of 2 inch diameter pipe to form air chamber, with 1/8 inch brass needle valve at top of chamber.

B. Float Type: Brass or semi-steel body, copper float, stainless steel valve and valve seat; suitable for system operating temperature and pressure; with isolating valve.

C. Washer Type: Brass with hydroscopic fiber discs, vent ports, adjustable cap for manual shut-off, and integral spring loaded ball check valve.

2.3 ACCEPTABLE MANUFACTURERS - STRAINERS

A. Armstrong.

B. Bell and Gossett.

C. IMI Flow Design.

D. Mueller Steam Specialty.

E. Victaulic (For grooved systems only)

2.4 STRAINERS

A. Size 2 inch and Under: Screwed brass or iron body for 175 psig working pressure, Y pattern with 1/32 inch stainless steel perforated screen.

B. Size 2-1/2 inch to 4 inch: Flanged or grooved iron body for 175 psig working pressure, Y pattern with 3/64 inch stainless steel perforated screen.
C. Size 6 inch and Larger: Flanged or grooved iron body for 175 psig working pressure, basket pattern with 1/8 inch stainless steel perforated screen.

2.5 ACCEPTABLE MANUFACTURERS - PUMP SUCTION FITTINGS

A. Bell and Gossett.

B. TACO.

C. Victaulic (For grooved systems only)

2.6 SUCTION FITTINGS

A. Fitting: Angle pattern, cast-iron body, threaded for 2 inch and smaller, flanged or grooved for 2-1/2 inch and larger, rated for 175 psig working pressure, with inlet vanes, cylinder strainer with 3/16 inch diameter openings, disposable fine mesh strainer to fit over cylinder strainer, and permanent magnet located in flow stream and removable for cleaning.

B. Accessories: Adjustable foot support, blowdown tapping in bottom, gauge tapping in side.

2.7 ACCEPTABLE MANUFACTURERS - FLOW INDICATORS

A. Bell and Gossett.

B. Watson McDaniel.

2.8 FLOW INDICATORS

A. Brass construction, threaded for insertion into piping system, packless, with paddle with removable segments, vapor proof electrical compartment with switches.

2.9 ACCEPTABLE MANUFACTURERS - FLOW CONTROLS

A. Bell and Gossett/ITT Hoffman.

B. IMI Flow Design.

C. TACO.

D. Victaulic/TA

2.10 FLOW CONTROLS

A. Construction: Brass or bronze body with union on inlet and outlet, temperature and pressure test plug on inlet, and outlet, blowdown/backflush drain.

B. Calibration: Control flow within 5 percent of selected rating, over operating pressure range of 10 times minimum pressure required for control.

C. Control Mechanism: Stainless steel or nickel plated brass piston or regulator cup, operating against stainless steel helical or wave formed spring.

D. Accessories: In-line strainer on inlet, and ball valve on outlet.

2.11 ACCEPTABLE MANUFACTURERS - FLOW METERS

A. Bell and Gossett/ITT Hoffman.
B. IMI Flow Design.
C. TACO.
D. Victaulic/TA.

2.12 FLOW METERS
A. Orifice principle by-pass circuit with direct reading gauge, soldered, or flanged piping connections for 125 psig working pressure, with shut off valves, and drain and vent connections.
B. Cast iron, wafer type, orifice insert flow meter for 250 psig working pressure, with read-out valves equipped with integral check valves with gasketed caps.
C. Calibrated, plug type balance valve with precision machined orifice, readout valves equipped with integral check valves and gasketed caps, calibrated nameplate and indicating pointer.
D. Cast iron or bronze, globe style, balance valve with handwheel with vernier type ring setting and memory stop, drain connection, readout valves equipped with integral check valves and gasketed caps.
E. Portable meter consisting of case containing two, 3 percent accuracy pressure gauges with 0-135 inches and 0-60 feet pressure ranges for 500 psig maximum working pressure, color coded hoses for low and high pressure connections, and connectors suitable for connection to read-out valves.

2.13 ACCEPTABLE MANUFACTURERS - RELIEF VALVES
A. Bell and Gossett.
B. McDonnell-Miller.
C. TACO.

2.14 RELIEF VALVES
A. Bronze body, teflon seat, stainless steel stem and springs, automatic, direct pressure actuated, capacities ASME certified and labelled.

2.15 ACCEPTABLE MANUFACTURERS - PRESSURE AND TEMPERATURE TEST PLUGS
A. Peterson Equipment Company

2.16 PRESSURE AND TEMPERATURE TEST PLUGS
A. Test plugs shall be designed to receive temperature or pressure probe. Plugs shall be solid brass with two valve cores of Neoprene (Max 200°F service), fitted with removable protective cap, cap retaining strap, and gasket. Provide plugs with extension neck to match pipe insulation thickness.

PART 3 - EXECUTION
3.1 INSTALLATION AND APPLICATION
A. Install specialties in accordance with manufacturer’s instructions to permit intended performance.
B. Support tanks inside building from building structure in accordance with manufacturer’s instructions.
C. Where large air quantities can accumulate, provide enlarged air collection standpipes.
D. Provide manual air vents at system high points and as indicated on details and drawings.

E. For automatic air vents in ceiling spaces or other concealed locations, provide vent tubing to nearest drain.

F. Provide air separator on suction side of system circulation pump and connect to expansion tank.

G. Provide valved drain and hose connection on strainer blow down connection.

H. Provide pump suction fitting on suction side of base mounted centrifugal pumps. Remove temporary strainers after cleaning systems.

I. Support pump fittings with floor mounted pipe and flange supports.

J. Provide relief valves on pressure tanks; and on low pressure side of reducing valves, heat exchangers, and expansion tanks.

K. Select system relief valve capacity so that it is greater than make-up pressure reducing valve capacity. Select equipment relief valve capacity to exceed rating of connected equipment.

L. Pipe relief valve outlet to nearest floor drain.

M. Where one line vents several relief valves, make cross sectional area equal to sum of individual vent areas.

N. Provide pressure and temperature test plugs at the inlet and outlet of all coils, coil control valves, heat exchangers, strainers, pumps, and at all other locations indicated on the drawings.

END OF SECTION
SECTION 23 21 23
HYDRONIC PUMPS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS
 A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.
 B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 WORK INCLUDED
 A. Vertical in-line pumps.

1.3 RELATED SECTIONS
 A. Section 23 05 13 - Common Motor Requirements for HVAC Equipment
 B. Section 23 05 48 - Vibration and Seismic Controls for HVAC Piping and Equipment
 C. Section 23 07 16 - HVAC Equipment Insulation
 D. Section 23 07 19 - HVAC Piping Insulation
 E. Section 23 21 16 - Underground Hydronic Piping

1.4 REFERENCES
 A. NEMA MG 1 - Motors and Generators.
 B. NFPA 70 - National Electrical Code.
 C. UL 778 - Standard for Motor-Operated Water Pumps.

1.5 QUALITY ASSURANCE
 A. Manufacturer: Company specializing in manufacture, assembly, and field performance of pumps with minimum five years' experience.
 B. Alignment: Base mounted pumps shall be aligned by qualified millwright and alignment certified.
 C. Impellers: All impellers shall be dynamically balanced.
 D. The Mechanical Contractor shall be responsible for accurately checking all pumping heads, based upon the actual piping and equipment installation. The Contractor shall be responsible for furnishing pumps and motors of proper sizes suitable for the actual installation. Do not provide pumps with capacities less than the amount indicated on the Drawings.

1.6 SUBMITTALS
 A. Submit shop drawings and product data under provisions of Division One.
 B. Submit certified pump curves showing performance characteristics with pump and system operating point plotted. Include NPSH curve when applicable.
C. Submit manufacturer's installation instructions under provisions of Division One.

1.7 OPERATION AND MAINTENANCE DATA

A. Submit operation and maintenance data under provisions of Division One.

B. Include installation instructions, assembly views, lubrication instructions, and replacement parts list.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to site under provisions of Division One.

B. Store and protect products under provisions of Division One.

1.9 EXTRA PARTS

A. Provide one set of replacement mechanical seals for each size of pump. After the pumps are in operation for ninety days, the Contractor shall check the seals and replace any that are defective. If the replacement seals are not used during the 90-day operational period, they shall be delivered to the Owner.

1.10 OPERATIONS PERSONNEL TRAINING

A. Provide a training session for the owner's operations personnel. Training session shall be performed by a qualified person who is knowledgeable in the subject system/equipment. Submit a training agenda two (2) weeks prior to the proposed training session for review and approval. Training session shall include at the minimum:

1. Purpose of equipment.
2. Principle of how the equipment works.
3. Important parts and assemblies.
4. How the equipment achieves its purpose and necessary operating conditions.
5. Most likely failure modes, causes and corrections.
6. On site demonstration.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Taco.

B. Bell and Gossett.

C. Grundfos/Paco.

2.2 GENERAL CONSTRUCTION REQUIREMENTS

A. Balance: Rotating parts, statically and dynamically.

B. Construction: To permit servicing without breaking piping or motor connections.

C. Pump Motors: NEMA MG 1 motors shall operate at 1750 rpm unless specified otherwise. Provide totally enclosed motors when mounted outdoors. Refer to Section 23 05 13.

D. Pump Connections: Flanged, for pipe size two inches and larger. Provide union for pipe sizes less than two inches.

E. Critical speed of each pump shall be at least 115% of the running speed listed in the schedule.
F. Pumps shall meet the minimum quality standards of UL 778.

2.3 VERTICAL IN-LINE PUMPS

A. Type: Vertical, single stage, close coupled, radially or horizontally split casing, for in-line mounting, for 175 psig maximum working pressure.

B. Casing: Cast steel, with suction and discharge gauge port, casing wear ring, seal flush connection, drain plug, flanged suction and discharge.

C. Impeller: Bronze, fully enclosed, keyed directly to motor shaft or extension.

D. Shaft: Stainless Steel or Steel with Stainless Steel Sleeve.

E. Seal: Carbon rotating against a stationary ceramic seat viton fitted, 225 degrees F maximum continuous operating temperature.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install pumps in accordance with manufacturer's instructions.

B. Provide access space around pumps for service. Provide no less than minimum as recommended by manufacturer.

C. Ensure pumps operate at specified system fluid temperatures without vapor binding and cavitation, are non-overloading in parallel or individual operation, and operate within 25 percent of midpoint of published maximum efficiency curve.

D. Pumps shall be free of flashing and cavitation at all flow rates from 25% to 125% of design flow under the suction conditions of the pump installation.

E. The impeller selected for compliance with design requirements shall not exceed 95% of cutwater diameter for the selected pump casing size. This shall be clearly certified on the Shop Drawing submittal.

F. Decrease from line size with long radius reducing elbows or reducers. Support piping adjacent to pump such that no weight is carried on pump casings. For close coupled or base mounted pumps, provide supports under elbows on pump suction and discharge lines.

G. Provide line sized shut-off valve and strainer on pump suction, and line sized soft seat check valve and shut-off valve on pump discharge.

H. Provide air cock and drain connection on horizontal pump casings.

I. Provide drains for bases and seals, piped to and discharging into floor drains.

J. Lubricate pumps before start-up.

K. Install base mounted pumps on concrete base, with anchor bolts, set and level, and grout in place.

L. Qualified millwright shall check, align, and certify base mounted pumps prior to start-up.

END OF SECTION
SECTION 23 25 13
WATER TREATMENT FOR CLOSED LOOP HYDRONIC SYSTEMS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in this document.

1.2 SCOPE

A. Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for Owner’s use.

1.3 REFERENCES

1.4 DESCRIPTION OF WORK

A. Work Included: Perform water analysis and provide all water treatment products, equipment and labor for testing, cleaning, flushing and dispensing products to control water quality for each system specified hereinafter as follows:

1. Chilled Water System

B. Chemicals: Provide, at no additional cost to the Owner, all chemicals required for operating and testing all water treatment systems prior to and for one (1) year after Substantial Completion.

C. Instructions: Provide operating and maintenance instructions for each water treatment system; include one set in each Owner’s Manual and deliver one set to Owner’s operating personnel.

D. Testing Equipment and Reagents: Furnish suitable water treatment testing equipment for each system, complete with apparatus and reagents necessary for operation prior to and for three (3) months after Substantial Completion.

1. Service Representative:
 a. Cleaning and Flushing test required verifying satisfactory completion of pipe cleaning.
 b. Provide water analysis report quarterly on each operating system.
 c. Annually perform microbiological culture study on the system to monitor bacteria.

E. Replacement and Rework: Replace defective or nonconforming materials and equipment with new materials and equipment at no additional cost to Owner for one (1) year after Substantial Completion; monthly reports shall be provided to the Owner and Architect/Engineer.
1. Guarantee: Provide system produced by manufacturer who is willing to execute the required guarantee.
 a. Agreement to Maintain: Provide system produced by manufacturer who is willing to execute (with the Owner) the required agreement for continued maintenance of the system.

1.5 QUALITY ASSURANCE

A. Qualifications: The Water Treatment Contractor for work under this Section shall have:
 1. Research and development facilities.
 a. Regional laboratories capable of making a water analysis.
 b. A service department and qualified technical service representative located within a reasonable distance of the project site.
 c. Service representatives who are Registered Engineers or factory-certified technicians with not less than five (5) years of water treatment experience with the water treatment system manufacturer. A Certified Water Technologist (CWT) qualified professional is preferred.

B. Packaging and Labeling: Water treatment chemicals will be supplied in a container suitable for product, and will be in accordance with DOT shipping standards.

C. Electrical Standards: Provide electrical products which have been tested, listed and labeled by Underwriters Laboratories (UL) and which comply with National Electrical Manufacturers' Association (NEMA) standards.

D. Chemical Standards: Provide chemical products acceptable under state and local pollution control or other governing regulations.

1.6 SUBMITTALS

A. Test reports: Submit test reports certified by an officer of the firm, on water treatment company letterheads, of samples of each treated water system specified. Comply with ASTM D596 for reporting. Indicate the ASTM best methods for each test. Tests will included by are not limited to conductivity, pH, chemical residual, iron, copper, and bacteria count.

B. Shop Drawings: Submit shop drawings for each water treatment system. Show wiring, pumps, piping and tubing sizes, fittings, accessories, valves and connections and monitoring equipment.

C. Guarantee: Submit written guarantee, signed by the Manufacturer and countersigned by the Installer and Contractor, agreeing to adjust or replace the chemicals in the systems as required to achieve the required performance, during a one (1) year period following the final start-up or the continued operation of the systems.

D. Agreement to Maintain: Prior to the time of final acceptance, the Manufacturer of the water treating system shall submit four (4) copies of an "Agreement for Continued Service and the Owner's Possible Acceptance." Offer terms and conditions for furnishing chemical and providing continued testing and equipment for a one (1) year period with option for renewal of the Agreement by Owner.

1.7 OPERATIONS PERSONNEL TRAINING

A. Provide a training session for the owner's operations personnel. Training session shall be performed by a qualified person who is knowledgeable in the subject system/equipment. Submit a training agenda two (2) weeks prior to the proposed training session for review and approval. Training session shall include at the minimum:
 1. Purpose of equipment.
 a. Principle of how the equipment works.
 b. Important parts and assemblies.
 c. How the equipment achieves its purpose and necessary operating conditions.
 d. Most likely failure modes, causes and corrections.
PART 2 - PRODUCTS

2.1 GENERAL

A. Water Analysis: Determine which chemicals to use from the results of a water sample analysis taken from the building site by the system manufacturer. Provide ingredients necessary to achieve the desired water conditions.

B. Pre-Treatment: Treat water piping systems with chemicals to remove and permit flushing of mill scale, oil, grease and other foreign matter.

C. FDA and USDA Approval: Use only FDA and USDA approved products in system with direct connection to domestic water systems.

D. Governing Laws: Ensure that neither products, waste, blow-down nor other effluents violate local, state, EPA, or other agency regulations in effect in the project area.

2.2 APPROVED WATER TREATMENT SERVICE

A. Water Treatment Services

B. Kurita (U.S. Water/ChemCal)

C. Chem Treat

D. Nalco

E. Gerratt Callahan

2.3 CHILLED AND HOT WATER SYSTEMS

A. Chemicals: Provide water treatment products which contain inhibitors that perform the following:

1. Form a protective film to prevent corrosion and scale formation;
2. Scavenge oxygen and protect against scale;
3. Remain stable throughout operating temperature range, and;
4. Are compatible with pump seals and other elements in the system.
5. Corrosion inhibitor chemical – chill loop. This product must be in liquid form and impart the following active ingredients at the following dosages when fed in CHILL LOOP water: 1) nitrite (as NO2) = 400-800 ppm, 2) borate = 200-400 ppm, 3) azole = 20-60 ppm. The resulting bulk water pH range should be 9.0-10.5.
6. Corrosion inhibitor chemical – hot loop. This product must impart the following active ingredients at the following dosages when fed in HOT LOOP water: 1) nitrite (as NO2) = 800-1200 ppm, 2) borate = 400-600 ppm, 3) azole = 40-80 ppm. The resulting bulk water pH range should be 9.0-10.5., for aluminum condensing boiler molybdate at 10 to 25 ppm.

B. Equipment: For each system, provide a 5-gallon filter feeder constructed of materials which are impervious to the products dispensed. Feeder shall be designed for not less than 200-psig operating pressure. Filter feeder shall be as manufactured by Vector Industries model FA-900 or approved equal. Provide flow indicator meter on discharge of filter feeder.

C. Test Kit: Provide test kit and reagents for determining proper water conditions. Test kit should be capable of testing presence of corrosion inhibitor and pH. A handheld connectivity/TDS meter shall be part of the test kit package.

D. Treatment: Treat initial water charge to water system, after system has been flushed and prepped, to achieve a water quality as specified. Test report required to verify cleaning.
E. Reports: Prepare certified test report for each required water performance characteristic. Comply with the following ASTM standard, where applicable:

1. ASTM D1067 – Tests for Acidity or Alkalinity of Water.
4. ASTM D3370 – Sampling Water.

PART 3 – EXECUTION

3.1 THE WATER TREATMENT CONTRACTOR

A. General: After piping systems are erected pressure tested and proven free of leaks, administer chemicals required for preparation treatment and flushing. Apply chemicals for the time period and in the concentration recommended by the water treatment manufacturer for this portion of the work. Flushing must be for a minimum of 24 continuous hours.

B. Testing: After completion of 24 continuous hours of flushing, perform test procedures and submit a written report of test conditions and results to the Engineer. If test results are unsatisfactory, repeat preparation treatment as necessary to achieve test results approved by the Owner’s insurance carrier and the Engineer.

3.2 SERVICES OF MECHANICAL CONTRACTOR

A. Piping systems shall be pressure tested and approved for tightness, they shall be thoroughly cleaned and flushed using and approved pipe cleaning.

B. After initial chemical treatment has been added, the systems must be circulated for 48 hours with all valves opened; then the automated building system can be initiated.

3.3 PIPE CLEANING, STERILIZATION, AND FLUSHING

A. Additions/Renovations: When connecting new piping to existing piping, provide full size isolation valves at connection points and wire strainer with fine mesh screens.

B. All connections required for cleaning, purging and circulating shall be included as permanent installation with valves. Provide permanent pipe bypasses at each coil and heat exchanger during this cleaning operation and for future flushing. All air vents, gauges, strainers, etc., valve connections in piping systems shall be blown clean during cleaning and after cleaning operation is completed.

C. After cleaning, drain the system, fill with fresh water and flush thoroughly for a minimum of 48 hours or as recommended by Engineer.

D. All flushing, cleaning, and initial chemical treatment shall be complete and witnessed by Owner prior to starting systems.

E. Start-up procedures: During water system start-up, operate water treating system (after changing with specified chemicals) to maintain the required steady-state characteristics of water. Demonstrate system operation to Owner’s operating personnel.

3.4 ADDITIONAL REQUIREMENTS FOR THE WATER TREATMENT CONTRACTOR

A. Vendor shall warrant the chemicals used in the water treatment program, and will have no detrimental effects on the metallic or non-metallic materials in the equipment being treated; if applied according to Vendor’s instructions.

B. All testing of the Owner’s systems are to be completed on-site and discussed with Owner’s HVAC personnel with a copy of the report given to him/her for signature.
C. All work shall be performed in cooperation with Owner's HVAC personnel.

D. Periodic de-scaling with inhibited acids will not be considered as meeting this specification.

E. Sulfuric acid or other inhibited acids shall not be used in the chemical treatment program of Owner.

F. The Contractor shall provide a biocide program consisting of both an oxidizing biocide and bio-dispersant if required.

3.5 PERSONNEL TRAINING

A. Operator Training: Train Owner's personnel in use and operation of heating water, chilled water treating systems. A Program Administration Manual shall be furnished encompassing all systems in this section of the Specifications.

B. Provide two (2) hours in use and operation of water treating systems.

END OF SECTION
PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. Section 23 02 00 - Basic Materials and Methods for HVAC shall be included as a part of this Section as though written in full in this document.

1.2 SCOPE

A. Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for owner's use.

1.3 RELATED SECTIONS

A. Section 23 05 13 - Common Motor Requirements for HVAC Equipment

B. Section 23 05 48 - Vibration and Seismic Controls for HVAC Piping and Equipment

C. Section 23 05 93 - Testing, Adjusting, And Balancing

D. Section 23 07 16 - HVAC Equipment Insulation

E. Section 23 07 19 - HVAC Piping Insulation

F. Section 23 08 00 - Commissioning of HVAC Systems

G. Section 23 09 63 - Energy Management and Control System (EMCS)

H. Section 23 21 13 - Above Ground Hydronic Piping

I. Section 23 21 19 - Hydronic Specialties

1.4 REFERENCES

A. AHRI 370 - Sound Performance Rating of Large Air-cooled Outdoor Refrigerating and Airconditioning Equipment.

B. AHRI 550/590 (I-P) - Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle.

E. ASME BPVC-VIII-1 - Boiler and Pressure Vessel Code, Section VIII, Division 1: Rules for Construction of Pressure Vessels.

SECTION 26 02 00
BASIC MATERIALS AND METHODS FOR ELECTRICAL

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all Work herein.

B. The Contract Drawings indicate the extent and general arrangement of the systems. If any departure from the Contract Drawings are deemed necessary by the Contractor, details of such departures and the reasons therefore, shall be submitted to the Architect for approval as soon as practicable. No such departures shall be made without the prior written approval of the Architect.

1.2 SCOPE OF WORK

A. The Work included under this Contract consists of the furnishing and installation of all equipment and material necessary and required to form the complete and functioning systems in all of its various phases, all as shown on the accompanying Drawings and/or described in these Specifications. The contractor shall review all pertinent drawings, including those of other contracts prior to commencement of Work.

B. This Division requires the furnishing and installing of all items Specified herein, indicated on the Drawings or reasonably inferred as necessary for safe and proper operation; including every article, device or accessory (whether or not specifically called for by item) reasonably necessary to facilitate each system’s functioning as indicated by the design and the equipment specified. Elements of the work include, but are not limited to, materials, labor, supervision, transportation, storage, equipment, utilities, all required permits, licenses and inspections. All work performed under this Section shall be in accordance with the Project Manual, Drawings and Specifications and is subject to the terms and conditions of the Contract.

C. The approximate locations of Electrical items are indicated on the Drawings. These Drawings are not intended to give complete and accurate details in regard to location of outlets, apparatus, etc. Exact locations are to be determined by actual measurements at the building, and will in all cases be subject to the Review of the Owner or Engineer, who reserves the right to make any reasonable changes in the locations indicated without additional cost to the Owner.

D. Items specifically mentioned in the Specifications but not shown on the Drawings and/or items shown on Drawings but not specifically mentioned in the Specifications shall be installed by the Contractor under the appropriate section of work as if they were both specified and shown.

E. All discrepancies within the Contract Documents discrepancies between the Contract Documents and actual job-site conditions shall be reported to the Owner or Engineer so that they will be resolved prior to the bidding, where this cannot be done at least 7 working days prior to bid; the greater or more costly of the discrepancy shall be bid. All labor and materials required to perform the work described shall be included as part of this Contract.

F. It is the intention of this Section of the Specifications to outline minimum requirements to furnish the Owner with a turn-key and fully operating system in cooperation with other trades.

G. It is the intent of the above "Scope" to give the Contractor a general outline of the extent of the Work involved; however, it is not intended to include each and every item required for the Work. Anything omitted from the "Scope" but shown on the Drawings, or specified later, or necessary for a complete and functioning electrical system shall be considered a part of the overall "Scope".

H. The Contractor shall rough-in fixtures and equipment furnished by others from rough-in and placement drawings furnished by others. The Contractor shall make final connection to fixtures and equipment furnished by others.
I. Contractor shall participate in the commissioning process; including but not limited to meeting attendance, completion of checklists and participation in functional testing.

1.3 RELATED SECTIONS
A. General Conditions
B. Supplementary Conditions
C. Division One

1.4 COOPERATION WITH TRADES
A. Cooperation with trades of adjacent, related, or affected materials or operations shall be considered a part of this work in order to affect timely and accurate placing of work and bring together in proper and correct sequence, the work of such trades.

1.5 REFERENCES
A. National Electrical Code (NEC)
B. American Society for Testing and Materials (ASTM)
C. Underwriter's Laboratories, Inc. (UL)
D. Insulated Cable Engineer's Association (ICEA).
E. National Electrical Manufacturer's Association (NEMA).
F. Institute of Electrical and Electronic's Engineers (IEEE).
H. National Fire Protection Association (NFPA).

1.6 COMPLETE FUNCTIONING OF WORK
A. All work fairly implied as essential to the complete functioning of the electrical systems shown on the Drawings and Specifications shall be completed as part of the work of this Division unless specifically slated otherwise. It is the intention of the Drawings and Specifications to establish the types of the systems, but not set forth each item essential to the functioning of the system. In case of doubt as to the work intended, or in the event of amplification or clarification thereof, the Contractor shall call upon the Architect for supplementary instructions, Drawings, etc.

B. Contractor shall review all pertinent Drawings and adjust his work to all conditions shown there on. Discrepancies between Plans, Specifications, and actual field conditions shall be brought to the prompt attention of the Architect.

1. Approximate location of transformers, feeders, branch circuits, outlets, lighting and power panels, outlets for special systems, etc., are indicated on the Drawings. However, the Drawings do not give complete and accurate detailed locations of such outlets, conduit runs, etc., and exact locations must be determined by actual field measurement. Such locations will, at all times, be subject to the approval of the Architect.

2. Communicate with the Architect and secure his approval of any outlet (light fixture, receptacle, switch, etc.) location about which there may be the least question. Outlets obviously placed in a location not suitable to the finished room or without specific approval, shall be removed and relocated when so directed by the Architect. Location of
light fixtures shall be coordinated with reflected ceiling plans.

C. Additional coordination with mechanical contractor may be required to allow adequate clearances of mechanical equipment, fixtures and associated appurtenances. Contractor to notify Architect and Engineer of unresolved clearances, conflicts or equipment locations.

1.7 SCHEMATIC NATURE OF CONTRACT DOCUMENTS

A. The contract documents are schematic in nature in that they are only to establish scope and a minimum level of quality. They are not to be used as actual working construction drawings. The actual working construction drawings shall be the approved shop drawings.

1.8 CONTRACTOR’S QUALIFICATIONS

A. An approved contractor for the work under this division shall be:

1. A specialist in this field and have the personnel, experience, training, and skill, and the organization to provide a practical working system.
2. Able to furnish evidence of having contracted for and installed not less than 3 systems of comparable size and type that have served their Owners satisfactorily for not less than 3 years.
3. Perform work by persons qualified to produce workmanship of specified quality. Persons performing electrical work shall be required to be licensed. Onsite supervision, journeyman shall have minimum of journeyman license. Helpers, apprentices shall have minimum of apprentice license.

1.9 DATE OF FINAL ACCEPTANCE

A. The date of final acceptance shall be the date of owner occupancy, or the date all punch list items have been completed or final payment has been received. Refer to Division One for additional requirements.

B. The date of final acceptance shall be documented in writing and signed by the architect, owner and contractor.

1.10 DEFINITIONS AND SYMBOLS

A. General Explanation: A substantial amount of construction and Specification language constitutes definitions for terms found in other Contract Documents, including Drawings which must be recognized as diagrammatic and schematic in nature and not completely descriptive of requirements indicated thereon. Certain terms used in Contract Documents are defined generally in this article, unless defined otherwise in Division 1.

B. Definitions and explanations of this Section are not necessarily either complete or exclusive, but are general for work to the extent not stated more explicitly in another provision of the Contract Documents.

C. Indicated: The term "Indicated" is a cross-reference to details, notes or schedules on the Drawings, to other paragraphs or schedules in the Specifications and to similar means of recording requirements in Contract Documents. Where such terms as "Shown", "Noted", "Scheduled", "Specified" and "Detailed" are used in lieu of "Indicated", it is for the purpose of helping the reader locate cross-reference material, and no limitation of location is intended except as specifically shown.

D. Directed: Where not otherwise explained, terms such as "Directed", "Requested", "Accepted", and "Permitted" mean by the Architect or Engineer. However, no such implied meaning will be interpreted to extend the Architect's or Engineer's responsibility into the Contractor's area of construction supervision.

E. Reviewed: Where used in conjunction with the Engineer's response to submittals, requests for information, applications, inquiries, reports and claims by the Contractor the meaning of the term
"Reviewed" will be held to limitations of Architect's and Engineer's responsibilities and duties as specified in the General and Supplemental Conditions. In no case will "Reviewed" by Engineer be interpreted as a release of the Contractor from responsibility to fulfill the terms and requirements of the Contract Documents.

F. Furnish: Except as otherwise defined in greater detail, the term "Furnish" is used to mean supply and deliver to the project site, ready for unloading, unpacking, assembly, installation, etc., as applicable in each instance.

G. Install: Except as otherwise defined in greater detail, the term "Install" is used to describe operations at the project site including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protection, cleaning and similar operations, as applicable in each instance.

H. Provide: Except as otherwise defined in greater detail, the term "Provide" is used to mean "Furnish and Install", complete and ready for intended use, as applicable in each instance.

I. Installer: Entity (person or firm) engaged by the Contractor or its subcontractor or Sub-contractor for performance of a particular unit of work at the project site, including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protection, cleaning and similar operations, as applicable in each instance. It is a general requirement that such entities (Installers) be expert in the operations they are engaged to perform.

J. Imperative Language: Used generally in Specifications. Except as otherwise indicated, requirements expressed imperatively are to be performed by the Contractor. For clarity of reading at certain locations, contrasting subjective language is used to describe responsibilities that must be fulfilled indirectly by the Contractor, or when so noted by other identified installers or entities.

K. Minimum Quality/Quantity: In every instance, the quality level or quantity shown or specified is intended as minimum quality level or quantity of work to be performed or provided. Except as otherwise specifically indicated, the actual work may either comply exactly with that minimum (within specified tolerances), or may exceed that minimum within reasonable tolerance limits. In complying with requirements, indicated or scheduled numeric values are either minimums or maximums as noted or as appropriate for the context of the requirements. Refer instances of uncertainty to Owner or Engineer via a request for information (RFI) for decision before proceeding.

L. Abbreviations and Symbols: The language of Specifications and other Contract Documents including Drawings is of an abbreviated type in certain instances, and implies words and meanings which will be appropriately interpreted. Actual word abbreviations of a self-explanatory nature have been included in text of Specifications and Drawings. Specific abbreviations and symbols have been established, principally for lengthy technical terminology and primarily in conjunction with coordination of Specification requirements with notations on Drawings and in Schedules. These are frequently defined in Section at first instance of use or on a Legend and Symbol Drawing. Trade and industry association names and titles of generally recognized industry standards are frequently abbreviated. Singular words will be interpreted as plural and plural words will be interpreted as singular where applicable and where full context of Contract Documents so indicate. Except as otherwise indicated, graphic symbols and abbreviations used on Drawings and in Specifications are those recognized in construction industry for indicated purposes. Where not otherwise noted symbols and abbreviations are defined by 1993 ASHRAE Fundamentals Handbook, chapter 34 "Abbreviations and Symbols", ASME and ASPE published standards.

1.11 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to the project properly identified with names, model numbers, types, grades, compliance labels, and other information needed for identification.

B. Deliver products to the project at such time as the project is ready to receive the equipment, pipe or duct properly protected from incidental damage and weather damage.

C. Damaged equipment shall be promptly removed from the site and new, undamaged equipment shall be installed in its place promptly with no additional charge to the Owner.
1.12 SUBMITTALS

A. Coordinate with Division 01 for submittal timetable requirements, unless noted otherwise within thirty (30) days after the Contract is awarded. The Contractor shall submit an electronic copy of a complete set of shop drawings and complete data covering each item of equipment or material. The submittal of each item requiring a submittal must be received by the Architect or Engineer within the above thirty day period. The Architect or Engineer shall not be responsible for any delays or costs incurred due to excessive shop drawing review time for submittals received after the thirty (30) day time limit. The Architect and Engineer will retain a copy of all shop drawings for their files. All literature pertaining to items subject to Shop Drawing submittal shall be submitted at one time. Submittals shall be placed in one electronic file in PDF 8.0 format and bookmarked for individual specification sections. Individual electronic files of submittals for individual specifications shall not be permitted. Each submittal shall include the following items:

1. A cover sheet with the names and addresses of the Project, Architect, MEP Engineer, General Contractor and the Subcontractor making the submittal. The cover sheet shall also contain the section number covering the item or items submitted and the item nomenclature or description.

2. An index page with a listing of all data included in the Submittal.

3. A list of variations page with a listing all variations, including unfurnished or additional required accessories, items or other features, between the submitted equipment and the specified equipment. If there are no variations, then this page shall state "NO VARIATIONS". Where variations affect the work of other Contractors, then the Contractor shall certify on this page that these variations have been fully coordinated with the affected Contractors and that all expenses associated with the variations will be paid by the submitting Contractor. This page will be signed by the submitting Contractor.

4. Equipment information including manufacturer's name and designation, size, performance and capacity data as applicable. All applicable Listings, Labels, Approvals and Standards shall be clearly indicated.

5. Dimensional data and scaled drawings as applicable to show that the submitted equipment will fit the space available with all required Code and maintenance clearances clearly indicated and labeled at a minimum scale of 1/4" = 1'-0", as required to demonstrate that the alternate or substituted product will fit in the space available.

6. Identification of each item of material or equipment matching that indicated on the Drawings.

7. Sufficient pictorial, descriptive and diagrammatic data on each item to show its conformance with the Drawings and Specifications. Any options or special requirements or accessories shall be so indicated. All applicable information shall be clearly indicated with arrows or another approved method.

8. Additional information as required in other Sections of this Division.

9. Certification by the General Contractor and Subcontractor that the material submitted is in accordance with the Drawings and Specifications, signed and dated in long hand. Submittals that do not comply with the above requirements shall be returned to the Contractor and shall be marked "REVISE AND RESUBMIT".

B. Refer to Division 1 for additional information on shop drawings and submittals.

C. Equipment and materials submittals and shop drawings will be reviewed for compliance with design concept only. It will be assumed that the submitting Contractor has verified that all items submitted can be installed in the space allotted. Review of shop drawings and submittals shall not be considered as a verification or guarantee of measurements or building conditions.

D. Where shop drawings and submittals are marked "REVIEWSED", the review of the submittal does not indicate that submittals have been checked in detail nor does it in any way relieve the Contractor from his responsibility to furnish material and perform work as required by the Contract Documents.

E. Shop drawings shall be reviewed and returned to the Contractor with one of the following categories indicated:
1. REVIEWED: Contractor need take no further submittal action, shall include this submittal in the O&M manual and may order the equipment submitted on.

2. REVIEWED AS NOTED: Contractor shall submit a letter verifying that required exceptions to the submittal have been received and complied with including additional accessories or coordination action as noted, and shall include this submittal and compliance letter in the O&M manual. The contractor may order the equipment submitted on at the time of the returned submittal providing the Contractor complies with the exceptions noted.

3. NOT APPROVED: Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is not approved, the Contractor will automatically be required to furnish the product, material or method named in the Specifications and/or drawings. Contractor shall not order equipment that is not approved. Repetitive requests for substitutions will not be considered.

4. REVISE AND RESUBMIT: Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is marked revise and resubmit, the Contractor will automatically be required to furnish the product, material or method named in the Specifications and/or provide as noted on previous shop drawings. Contractor shall not order equipment marked revise and resubmit. Repetitive requests for substitutions will not be considered.

5. CONTRACTOR’S CERTIFICATION REQUIRED: Contractor shall resubmit submittal on material, equipment or method of installation. The Contractor’s stamp is required stating the submittal meets all conditions of the contract documents. The stamp shall be signed by the General Contractor. The submittal will not be reviewed if the stamp is not placed and signed on all shop drawings.

6. MANUFACTURER NOT AS SPECIFIED: Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is marked manufacturer not as specified, the Contractor will automatically be required to furnish the product, material or method named in the specifications. Contractor shall not order equipment where submittal is marked manufacturer not as specified. Repetitive requests for substitutions will not be considered.

F. Materials and equipment which are purchased or installed without shop drawing review shall be at the risk of the Contractor and the cost for removal and replacement of such materials and equipment and related work which is judged unsatisfactory by the Owner or Engineer for any reason shall be at the expense of the Contractor. The responsible Contractor shall remove the material and equipment noted above and replace with specified equipment or material at his own expense when directed in writing by the Architect or Engineer.

G. Shop Drawing Submittals shall be complete and checked prior to submission to the Engineer for review.

H. Furnish detailed shop drawings, descriptive literature, table of contents listing all items being submitted at the beginning of each submittal package, physical data and a specification critique for each section indicating “compliance” and/or “variations” for the following items:

1. Conduit and Fittings
2. Wire

I. Refer to each specification section for additional requirements.

1.13 OPERATION AND MAINTENANCE MANUALS

A. Prepare maintenance manuals in accordance with Division 1 and in addition to the requirements specified in Division 1, include the following information for equipment items:

1. Description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of replacement parts.
2. Manufacturer’s printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.
3. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.
4. Servicing instructions and lubrication charts and schedules.

1.14 COORDINATION DRAWINGS

A. Prepare coordination drawings to a scale of 1/4"=1'-0" or larger; detailing major elements, components, and systems of mechanical equipment and materials in relationship with other systems, installations, and building components. Indicate locations where space is limited for installation and access and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including (but not necessarily limited to) the following:

1. Indicate the proposed locations of pipe, duct, equipment, and other materials. Include the following:
 a. Wall and type locations.
 b. Clearances for installing and maintaining insulation.
 c. Locations of light fixtures and sprinkler heads.
 d. Clearances for servicing and maintaining equipment, including tube removal, filter removal, and space for equipment disassembly required for periodic maintenance.
 e. Equipment connections and support details.
 f. Exterior wall and foundation penetrations.
 g. Routing of storm and sanitary sewer piping.
 h. Fire-rated wall and floor penetrations.
 i. Sizes and location of required concrete pads and bases.
 j. Valve stem movement.
 k. Structural floor, wall and roof opening sizes and details.

2. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.

3. Prepare floor plans, elevations, and details to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.

4. Prepare reflected ceiling plans to coordinate and integrate installations, air distribution devices, light fixtures, communication systems components, and other ceiling-mounted items.

B. This Contractor shall be responsible for coordination of all items that will affect the installation of the work of this Division. This coordination shall include, but not be limited to: voltage, ampacity, capacity, electrical and piping connections, space requirements, sequence of construction, building requirements and special conditions.

C. By submitting shop drawings on the project, this Contractor is indicating that all necessary coordination has been completed and that the systems, products and equipment submitted can be installed in the building and will operate as specified and intended, in full coordination with all other Contractors and Subcontractors.

1.15 RECORD DRAWINGS

A. Prepare Record Documents in accordance with the requirements of Division 00 and Division 01, in addition to the requirements specified in Division 26.

B. The Contractor shall maintain a separate set of clearly and legibly marked Record Drawings on the job site to record all changes and modifications, including, but not limited to the following: work details, alterations to meet site conditions, and changes made by "Change Order" notices. Mark the drawings with colored pencil(s). These shall be available for review by the Owner, Architect or Engineer during the entire construction stage.

C. The Record Drawings shall be updated concurrently as construction progresses, and in no case less frequently than a daily basis. They shall indicate accurate dimensions for all buried or concealed work, precise locations of all concealed pipe or duct, locations of all concealed valves, controls and devices and any deviations from the work shown on the Construction Documents. All dimensions shall include at least two dimensions to permanent structure points.
D. Engage the services of a Land Surveyor or Professional Engineer registered in the state in which the project is located as specified herein to record the locations and invert elevations of underground installations.

E. If the Contractor does not keep an accurate set of Record Drawings, the pay request may be altered or delayed at the request of the Architect. Delivery of Record Documents is a condition of final acceptance. Record Drawings shall be furnished in addition to Shop Drawings.

F. The Contractor shall submit an electronic copy of the record documents in PDF format and one (1) full size set of Record Drawing prints to the Architect or Engineer for review prior to scheduling the final inspection at the completion of the work. The drawings shall have the name(s) and seal(s) of the Engineer(s) removed or blanked out and shall be clearly marked and signed on each sheet as follows:

CERTIFIED RECORD DRAWINGS

DATE:

(NAME OF GENERAL CONTRACTOR)

BY: ____________________________

(SIGNATURE)

(NAME OF SUBCONTRACTOR)

BY: ____________________________

(SIGNATURE)

1.16 CERTIFICATIONS AND TEST REPORTS

A. Submit a detailed schedule for completion and testing of each system indicating scheduled dates for completion of system installation and outlining tests to be performed and schedule date for each test. This detailed completion and test schedule shall be submittal at least 90 days before the projected Project completion date.

B. Test result reporting forms shall be submitted for review no later than the date of the detailed schedule submitted.

C. Submit 4 copies of all certifications and test reports to the Architect or Engineer for review adequately in advance of completion of the Work to allow for remedial action as required to correct deficiencies discovered in equipment and systems.

D. Certifications and test reports to be submitted shall include, but not be limited to those items outlined in Section of Division 26.

1.17 MAINTENANCE MANUALS

A. Coordinate with Division 1 for maintenance manual requirements, unless noted otherwise bind together in "D ring type" binders by National model no. 79-883 or equal, binders shall be large enough to allow 1/4" of spare capacity. Three (3) sets of all approved shop drawing submittals, fabrication drawings, bulletins, maintenance instructions, operating instructions and parts exploded views and lists for each and every piece of equipment furnished under this Specification. All sections shall be typed and indexed into sections and ed for easy reference and shall utilize the individual specification section numbers shown in the Electrical Specifications as an organization guideline. Bulletins containing information about equipment that is not installed on the project shall be properly marked up or stripped and reassembled. All pertinent information required by the Owner for proper operation and maintenance of equipment supplied by Division 26 shall be clearly
B. Prepare maintenance manuals in accordance with Special Project Conditions, in addition to the requirements specified in Division 26, include the following information for equipment items:

1. Identifying names, name tags designations and locations for all equipment.
2. Fault Current calculations and Coordination Study.
3. Reviewed shop drawing submittals with exceptions noted compliance letter.
4. Fabrication drawings.
5. Equipment and device bulletins and data sheets clearly highlighted to show equipment installed on the project and including performance curves and data as applicable, i.e., description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and model numbers of replacement parts.
6. Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.
7. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions, servicing instructions and lubrication charts and schedules.
8. Equipment name plate data.
10. Exploded parts views and parts lists for all equipment and devices.
11. Color coding charts for all painted equipment and conduit.
12. Location and listing of all spare parts and special keys and tools furnished to the Owner.
13. Furnish recommended lubrication schedule for all required lubrication points with listing of type and approximate amount of lubricant required.

C. Refer to Division 1 for additional information on Operating and Maintenance Manuals.

D. Operating and Maintenance Manuals shall be turned over to the Owner or Engineer a minimum of 14 working days prior to the beginning of the operator training period.

1.18 OPERATOR TRAINING

A. The Contractor shall furnish the services of factory trained specialists to instruct the Owner's operating personnel. The Owner's operator training shall include 12 hours of onsite training in three 4 hour shifts.

B. Before proceeding with the instruction of Owner Personnel, prepare a typed outline in triplicate, listing the subjects that will be covered in this instruction, and submit the outline for review by the Owner. At the conclusion of the instruction period obtain the signature of each person being instructed on each copy of the reviewed outline to signify that he has a proper understanding of the operation and maintenance of the systems and resubmit the signed outlines.

C. Refer to other Division 26 Sections for additional Operator Training requirements.

1.19 SITE VISITATION

A. Visit the site of the proposed construction in order to fully understand the facilities, difficulties and restriction attending the execution of the work.

B. Before submitting a bid, it will be necessary for each Contractor whose work is involved to visit the site and ascertain for himself the conditions to be met therein in installing his work and make due provision for same in his bid. It will be assumed that this Contractor in submitting his bid has visited the premises and that his bid covers all work necessary to properly install the equipment shown. Failure on the part of the Contractor to comply with this requirement shall not be considered justification for the omission or faulty installation of any work covered by these Specifications and Drawings.

C. Understand the existing utilities from which services will be supplied; verify locations of utility services, and determine requirements for connections.
D. Determine in advance that equipment and materials proposed for installation fit into the confines indicated.

1.20 WARRANTY

A. The undertaking of the work described in this Division shall be considered equivalent to the issuance, as part of this work, of a specific guarantee extending one year beyond the date of completion of work and acceptance by Owner, against defects in materials and workmanship. Materials, appliances and labor necessary to effect repairs and replacement so as to maintain said work in good functioning order shall be provided as required. Replacements necessitated by normal wear in use or by Owner's abuse are not included under this guarantee.

B. All normal and extended warranties shall include parts, labor, miscellaneous materials, travel time, incidental expenses, freight/shipping, refrigerant, oils, lubricants, belts, filters and any expenses related to service call required to diagnose warranty problems.

1.21 TRANSFER OF ELECTRONIC FILES

A. Project documents are not intended or represented to be suitable for reuse by Architect/Owner or others on extensions of this project or on any other project. Any such reuse or modification without written verification or adaptation by Engineer, as appropriate for the specific purpose intended, will be at Architect/Owner's risk and without liability or legal exposure to Engineer or its consultants from all claims, damages, losses and expense, including attorney's fees arising out of or resulting thereof.

B. Because data stored in electric media format can deteriorate or be modified inadvertently, or otherwise without authorization of the data's creator, the party receiving the electronic files agrees that it will perform acceptance tests or procedures within sixty (60) days of receipt, after which time the receiving party shall be deemed to have accepted the data thus transferred to be acceptable. Any errors detected within the sixty (60) day acceptance period will be corrected by the party delivering the electronic files. Engineer is not responsible for maintaining documents stored in electronic media format after acceptance by the Architect/Owner.

C. When transferring documents in electronic media format, Engineer makes no representations as to the long-term compatibility, usability or readability of documents resulting from the use of software application packages, operating systems, or computer hardware differing from those used by Engineer at the beginning of the Project.

D. Any reuse or modifications will be Contractor's sole risk and without liability or legal exposure to Architect, Engineer or any consultant.

E. The Texas Board of Architectural Examiners (TBAE) has stated that it is in violation of Texas law for persons other than the Architect of record to revise the Architectural drawings without the Architect's written consent.

1. It is agreed that "MEP" hard copy or computer-generated documents will not be issued to any other party except directly to the Architect/Owner. The contract documents are contractually copyrighted and cannot be used for any other project or purpose except as specifically indicated in AIA B-141 Standard Form of Agreement Between Architect and Owner.

2. If the client, Architect or Owner of the project requires electronic media for "record purposes", then AutoCAD/ Revit documents will be prepared by Engineer on electronic media such as removable memory devices, flash drives or CD's. These documents can also be submitted via file transfer protocols. AutoCAD/ Revit files will be submitted with all title block references intact to permit the end user to only view and plot the drawings. Revisions will not be permitted in this configuration.

3. At the Architect/Owner's request, Engineer will assist the Contractor in the preparation of the submittals and prepare one copy of AutoCAD/ Revit files on electronic media or submit through file transfer protocols. The electronic media will be prepared with all indicia of documents ownership removed. The electronic media will be prepared in a ".rvt" or ".dwg" format to permit the end user to revise the drawings.
PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

A. The names and manufacturers and model numbers have been used in the Contract documents to establish types of equipment and standards of quality. Where more than one manufacturer is named for a specific item of equipment, only one of the specified manufacturers will be considered for approval. Where only one manufacturer is mentioned with the phrase "or approved equal", Contractor may submit an alternate manufacturer for consideration, provided the following conditions are met:

1. Submit alternate equipment with complete descriptive data in shop drawing form. Provide sample of equipment upon request for review by Architect. Samples will be returned if requested in writing.
2. Alternate equipment must be equal from the standpoint of materials, construction and performance.
3. Alternate submittal must be presented to the Engineer/Architect ten (10) days prior to bid date for approval.

B. The Architect and Engineer shall be the sole judge of quality and equivalence of equipment, materials and methods.

2.2 PRODUCT LISTING

A. Products used on this project shall be listed by Underwriters' Laboratories.

2.3 ACCESS DOORS

A. Wherever access is required in walls or ceilings to concealed junction boxes, pull boxes, equipment, etc., installed under this Division, furnish a hinged access door and frame with flush latch handle to another Division for installation. Doors shall be as follows:

1. Plaster Surfaces: Milcor Style K.
2. Ceramic Tile Surfaces: Milcor Style M.
3. Drywall Surfaces: Milcor Style DW.
4. Install panels only in locations approved by the Architect.

2.4 EQUIPMENT PADS

A. Provide 4-inch-high concrete pads for indoor floor mounted equipment. Pads shall conform to the shape of the equipment with a minimum of 6 inch beyond the equipment. Top and sides of pads shall be troweled to a smooth finish, equivalent to the floor. External corners shall be bullnosed to a 3/4" radius, unless shown otherwise.

B. Provide 6-inch-high concrete pads for all exterior mounted equipment. Pads shall conform to the shape of the equipment with a minimum of 6 inch beyond the equipment. Provide a 4-foot monolithic extension to the pad in front of the equipment for service when mounted on a non-finished area (i.e. landscape, gravel, clay, etc.) Top and sides of pads shall be troweled to a smooth finish. External corners shall be bullnosed to a 3/4" radius, unless shown otherwise.

C. Provide a minimum 6-inch-high, steel reinforced concrete pad for generators. Pads shall be sized 6" larger that the outside perimeter dimensions. Provide a 4-foot monolithic extension to the pad around the equipment for service when mounted on a non-finished area (i.e. landscape, gravel, clay, etc.). Refer to structural details. Top and sides of pads shall be troweled to a smooth finish. External corners shall be bullnosed to a 3/4" radius, unless shown otherwise. The generator shall be bolted to the concrete pad per the manufacturers details.

D. Provide steel reinforced concrete pad for utility transformers. Pads shall comply with Utility Company Standards.
2.5 ESCUTCHEONS

A. Provide heavy chrome or nickel plated plates, of approved pattern, on conduit passing through walls, floors and ceilings in finished areas. Where conduit passes through a sleeve, no point of the conduit shall touch the building construction. Caulk around such conduit with sufficient layers of two hour rated firesafing by Thermafiber 4.0 P.C.F. density, U.S.G. fire test 4/11/78 and seal off openings between conduit and sleeves with non-hardening mastic prior to application of escutcheon plate. Escutcheons shall be Gravler Sure-Lock, or approved equal.

2.6 SPACE LIMITATIONS

A. Equipment shall be chosen which shall properly fit into the physical space provided and shown on the drawings, allowing ample room for access, servicing, removal and replacement of parts, etc. Adequate space shall be allowed for clearances in accordance with Code requirements. Physical dimensions and arrangement of equipment shall be subject to the approval of the Architect.

2.7 PAINTING

A. All factory assembled equipment for electrical work, except light fixtures, that normally is delivered with a factory applied finish shall be delivered with a hard surface factory applied finish such as baked-on machinery enamel which will not require additional field painting. The finish shall consist of not less than 2 coats of medium gray color paint USA No. 61 Munsell Notation 8-3G, 6, 10/0.54 enamel. This Contractor shall protect this finish from damage due to construction operations until acceptance of the building. He shall be responsible for satisfactorily restoring any such finishes or replacing equipment that becomes stained or damaged.

2.8 ELECTRICAL SYSTEM IDENTIFICATION

A. Conduit Systems: Provide adequate marking of major conduit which is exposed or concealed in accessible spaces to distinguish each run as either a power or signal/communication conduit. Except as otherwise indicated, use orange banding with black lettering. Provide self-adhesive or snap-on type plastic markers. Indicate voltage for that raceway. Locate markers at ends of conduit runs, on pull boxes, on junction boxes, near switches and other control devices, near items of equipment served by the conductors, near points where conduit passes through walls or floors, or enters non-accessible construction and at spacings of not more than 50 feet along each run of conduit. Switch-leg conduit and short branches for power connections do not have to be marked, except where conduit is larger than ¾ inch. Branch circuit conduits, junction boxes and pull boxes shall be marked with a permanent marker indicating panel name and branch circuit numbers.

B. Underground Cable Identification: Bury a continuous, preprinted, bright colored plastic ribbon cable marker with each underground cable (or group of cables), regardless of whether conductors are in conduit, duct bank, or direct buried. Locate each directly over cables, 6 to 8 inches below finished grade.

C. Identification of Equipment:

1. All major equipment shall have a manufacturer’s label identifying the manufacturer’s address, equipment model and serial numbers, equipment size, and other pertinent data. Care shall be taken not to obliterate this nameplate in any way. Provide black back plate with white letters and numbers for normal equipment. Provide red back plate with white letters and numbers for optional emergency equipment. Provide yellow back plate with white letters and numbers for Life safety equipment.

2. A black-white-black laminated plastic engraved identifying nameplate shall be secured by stainless steel screws to each automatic transfer switch, switchboard, distribution panel, motor control center, motor starter panels and panelboards.

 a. Identifying nameplates shall have ¼ inch high engraved letters and shall contain the following information:

 1) Name
 2) Voltage
 3) Phase
 4) “3” or “4” wire, and
b. An example of a panelboard nameplate is:
 Center Panel – 1HB
 480/277 volt, 3 phase, 4 wire
 Center Fed from DP2

c. An example of an automatic transfer switch nameplate is:
 Center ATS #2
 480/277 volt, 3 phase, 4 wire, 4 pole
 Center Fed from MSB and DPE

3. Each feeder device in a switchboard, distribution panel, and motor control center device shall have a nameplate showing the load served in ½ inch high engraved letters.

4. A black-white-black laminated plastic engraved identifying nameplate shall be secured by screws to each transformer, safety switch, disconnect switch, individual motor starter, enclosed circuit breaker, wireway, and terminal cabinet.
 a. Identifying nameplates shall have 1/4 inch high engraved letters and shall indicate the equipment served.
 b. An example of a disconnect switch is: AHU-1.

5. Prohibited Markings: Markings which are intended to identify the manufacturer, vendor, or other source from which the material has been obtained are prohibited for installation within public, tenant, or common areas within the project. Also, prohibited are materials or devices which bear evidence that markings or insignias have been removed. Certification, testing (example, Underwriters’ Laboratories, Inc.), and approval labels are exceptions to this requirement.

6. Warning Signs: Provide warning signs where there is hazardous exposure associated with access to or operation of electrical facilities. Provide text of sufficient clarity and lettering of sufficient size to convey adequate information at each location; mount permanently in an appropriate and effective location. Comply with recognized industry standards for color and design.

7. Operational Tags: Where needed for proper and adequate information on operation and maintenance of electrical system, provide tags of plasticized card stock, either preprinted or hand printed. Tags shall convey the message, example: “DO NOT OPEN THIS SWITCH WHEN BURNER IS OPERATING.”

PART 3 - EXECUTION

3.1 EXCAVATING AND BACKFILLING

A. Trenching and backfilling and other earthwork operations required to install the facilities specified herein shall conform to the applicable requirements of Division 2 (95% of maximum standard density). Where trenching or excavation is required in improved areas, the backfill shall be compacted to a condition equal to that of adjacent undisturbed earth and the surface of the area restored to the condition existing prior to trenching or excavating operations. Provide a minimum of 3” of sand underneath all conduits. The plans indicate information pertaining to surface and subsurface obstructions; however, this information is not guaranteed. Should obstructions be encountered whether or not shown, the Contractor shall alter routing of new work, reroute existing lines, remove obstructions where permitted, or otherwise perform whatever work is necessary to satisfy the purpose of new work and leave existing surfaces and structures in a satisfactory and serviceable condition. All work shall comply with OSHA Standards.

3.2 WORKMANSHIP AND CONCEALMENT

A. The work of this Section shall be performed by workman skilled in their trade. Installation shall be consistent in completeness whether concealed or exposed. Each item of electrical work shall be concealed in walls, chases, under floors and above ceilings except:

1. Where shown to be exposed.
2. Where exposure is necessary to the proper function.

3.3 SLEEVES, CUTTING AND PATCHING

A. This section shall be responsible for placing sleeves for all conduit passing through walls, partitions, sound walls, beams, floors, roof, etc. Sleeves through below-grade walls shall use
water-tight fitting manufactured by O-Z/Gedney.

B. All cutting and patching will be done under another Division, but this Section will be responsible for timely performance of this work and layout of holes and setting sleeves.

C. All un-used sleeves shall be sealed with 2 hour UL approved fire sealant manufactured by “3M” or approved equal.

D. Refer to 26 05 33 for additional requirements.

3.4 ELECTRICAL GEAR

A. Install all electrical equipment in accordance with the National Electrical Code and as shown on the drawings.

B. Lighting contactors, time clocks, fire alarm equipment, security equipment disconnect switches, etc. mounted in mechanical/electrical rooms shall be mounted at a working height not requiring a ladder, when wall space is available. Installation of these devices at greater elevations shall be approved by the Engineer. Contractor shall provide a coordination sketch of each mechanical/electrical room noting locations and mounting heights of all electrical devices (note bottom and top elevations) shown to be installed. Sketches shall be provided to the Engineer for review and the general contractor for coordination with other trades working in these rooms.

C. Fire retardant back boards secured to drywall studs may be used for contactors, time clocks, fire alarm equipment, security equipment, and disconnect switches 60 amp or smaller. All other wall mounted devices shall be mounted to unistrut. Unistrut shall be securely mounted to the floor and structural ceiling. Toggle bolts or anchor bolts attached to drywall is not acceptable.

3.5 CLEANING

A. Clean lighting fixtures and equipment.

B. Touch-up and refinish scratches and marred surfaces on panels, switches, starters, and transformers.

3.6 CORROSIVE AREAS

A. In areas of a corrosive nature, which include but are not limited to the following: pool equipment rooms, cooling towers and areas subject to salt air, etc., provide NEMA 4 X stainless steel or fiberglass reinforced enclosures for contactors, panel boards, controllers, starters, disconnects and materials used as supporting means (i.e. plastibond unistrut, pipe, fittings). The use of spray on coating may be acceptable in some applications.

3.7 TESTS AND INSPECTIONS

A. Tests and inspection requirements shall be coordinated with Division I.

B. Date for final acceptance test shall be sufficiently in advance of completion date of contract to permit alterations or adjustments necessary to achieve proper functioning of equipment prior to contract completion date.

C. Conduct re-tests as directed by Architect on portions of work or equipment altered or adjusted as determined to be necessary by final acceptance test. No resultant delay or consumption of time as a result of such necessary re-test beyond contract completion date shall relieve Contractor of his responsibility under contract.

D. Put circuits and equipment into service under normal conditions, collectively and separately, as may be required to determine satisfactory operation. Demonstrate equipment to operate in accordance with requirements of these specifications. Perform tests in the presence of Architect. Furnish instruments and personnel required for tests.
E. Final Inspection:

1. At the time designated by the Architect, the entire system shall be inspected by the Architect and Engineer. The contractor or his representative shall be present at this inspection.
2. Panelboards, switches, fixtures, etc., shall be cleaned and in operating condition.
3. Certificates and documents required hereinbefore shall be in order and presented to the Architect prior to inspection.
4. Panel covers, junction box covers, etc., shall be removed for visual inspection of the wire, bus bars, etc.
5. After the inspection, any items which are noted as needing to be changed or corrected in order to comply with these specifications and the drawings shall be accomplished without delay.

F. The contractor shall provide a thermographic test using an independent testing laboratory using an infrared scanning device. This test shall include but not limited to all switchboards, distribution panelboards, panelboards, automatic transfer switches and other electrical distribution devices. This test shall be conducted to locate high temperature levels. This test shall be conducted between 3 to 8 months after occupancy, but not beyond the one year warranty period. Submit test to the architect and engineer using test reporting forms. All unacceptable conditions shall be corrected prior to the end of the warranty period.

END OF SECTION
H. NFPA 70 - National Electrical Code.

1.5 QUALITY ASSURANCE

A. Unit shall be rated in accordance with AHRI 550/590 (I-P), latest revision (U.S.A.).

B. Unit construction shall comply with ASHRAE Std 15 Safety Code, UL 1995, NFPA 70 and ASME applicable codes (U.S.A. codes).

C. Unit shall be manufactured in a facility registered to ISO 9002/BS5750, Part 2 Manufacturing Quality Standard.

D. Unit shall be tested at the factory.

E. Unit shall meet or exceed minimum efficiency requirements in accordance with ICC (IECC) and ASHRAE Std 90.1 I-P.

F. Unit shall be rated for sound performance in accordance with AHRI 370.

1.6 DELIVERY, STORAGE AND HANDLING

A. Unit shall be stored and handled per unit manufacturer's recommendations.

B. Protect unit from physical damage. Fit nozzles and open ends with plastic enclosures. Leave factory shipping covers and enclosures in place until installation.

1.7 SUBMITTALS

A. Submit shop drawings and product data under provisions of Division One.

B. Submit shop drawings indicating components, assembly, dimensions, weights and loadings, required clearances, and location and size of field connections. Indicate equipment, piping and connections, valves, strainers, and electronic valves required for complete system.

C. Verify unit voltage matches voltage on electrical drawings.

D. Submit product data indicating rated capacities, weights, specialties and accessories, electrical requirements and wiring diagrams.

E. Submit written certification that components of package not furnished by manufacturer have been selected in accordance with manufacturer's requirements.

F. Submit manufacturer's installation instructions including: Power, power wiring requirements, control wiring requirements, insulation details for unit motor starter details, etc.

G. Performance Data - Submittal shall include chiller manufacturer's computer generated performance ratings. These computer ratings shall be certified in accordance with AHRI 550/590 (I-P). Computer ratings shall also contain AHRI Certified part load values for operation at 100%, 75%, 50%, and 25% of full load.

1.8 WARRANTY

A. Provide parts and labor warranty for complete chiller package by equipment manufacturer for one year from start-up or 18 months from date received on site.

B. Provide five-year compressor and motor parts and labor warranty by the equipment manufacturer.
1.9 OPERATIONS PERSONNEL TRAINING

A. Provide a training session for the owner's operations personnel. Training session shall be performed by a qualified person who is knowledgeable in the subject system/equipment. Submit a training agenda two (2) weeks prior to the proposed training session for review and approval. Training session shall include at the minimum:

1. Purpose of equipment.
2. Principle of how the equipment works.
3. Important parts and assemblies.
4. How the equipment achieves its purpose and necessary operating conditions.
5. Most likely failure modes, causes and corrections.
6. On site demonstration.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Carrier

B. Trane

2.2 AIR COOLED LIQUID CHILLER

A. General: Factory assembled, single-piece, air-cooled liquid chiller. Contained within the unit cabinet shall be all factory wiring, piping, controls, refrigerant charge of HFC-410a and special features required prior to field start-up.

2.3 UNIT CABINET

A. Frame shall be of heavy-gage, painted galvanized steel.

B. Cabinet shall be galvanized steel casing with a baked on enamel powder finish.

C. Cabinet shall be capable of withstanding 1,000-hour salt spray test in accordance with ASTM B117.

2.4 FANS

A. Condenser fans shall be direct-driven, variable speed, and shall be statically and dynamically balanced with inherent corrosion resistance. Air shall be discharged vertically upward.

B. Fans shall be protected by coated steel wire safety guards.

C. Fan motors shall be high efficiency, 3 phase, Totally Enclosed Air-Over (TEAO), rigid mounted, permanently lubricated, with ball bearings.

D. All condenser fans shall be controlled by variable speed drive. Each refrigerant circuit shall have an independent variable speed drive to control the associated condenser fans.

2.5 COMPRESSORS

A. Unit shall have hermetic scroll type, direct drive compressors protected by motor temperature sensors.

B. Each compressor shall be equipped with a discharge shutoff valve, a crankcase heater to minimize oil dilution, and mounted on external rubber-in-shear vibration isolation.

C. Compressor shall start in unloaded condition. Capacity control shall be provided by staging individual compressors, with capability to reduce unit capacity to 15% of full load. Provide hot gas
bypass as necessary to achieve minimum load.

D. Motor cooling shall be provided by suction gas and protected by internal overload thermistor.

E. Lube oil system shall include filtration devices

2.6 COOLER

A. Cooler shall be either shell-and-tube type, or brazed plate type heat exchanger.

B. If cooler is shell-and-tube type, the cooler shall be tested and stamped in accordance with ASME BPVC-VIII-1 for a minimum refrigerant working-side pressure of 445 psig and shall be tested for a maximum fluid-side pressure of 300 psig. Shell-and-tube cooler shall be mechanically cleanable. Tubes shall be internally-enhanced, seamless copper type, and shall be rolled into tube sheets.

C. If cooler is brazed plate type, the cooler shall be tested and stamped in accordance with ASME BPVC-VIII-1 for a minimum refrigerant working-side pressure of 430 psig and shall be tested for a maximum fluid-side pressure of 150 psig. Brazed plate cooler shall be made of stainless steel using copper braze material.

D. Cooler shall be equipped with weld-on or grooved fluid connections.

E. Cooler shall be insulated with 3/4 inch, closed-cell insulation with a maximum K factor of 0.28.

F. Shall incorporate 1 refrigerant circuit for chillers with nominal capacity lower than 40 tons and shall incorporate 2 independent refrigerant circuits for chillers with nominal capacity of 40 tons or greater.

G. Shall have a cooler drain and vent.

H. Shall incorporate a refrigerant level sensing device.

I. Cooler shall be provided with a factory installed thermal dispersion type flow switch.

J. Provide cooler heater that provide cooler freeze protection down to 0°F.

2.7 CONDENSER

A. Coil shall be air-cooled with integral subcooler and shall be microchannel design consisting of parallel flow aluminum alloy tubes brazed to enhanced aluminum alloy fins. Condenser coils shall be made of a single material to avoid galvanic corrosion due to dissimilar metals. Condenser coils shall be a two-pass arrangement.

B. Condenser coils shall be leak tested for a minimum design working pressure of 650 psig.

C. Provide a fully louvered hail guard enclosure to protect the condenser coils.

2.8 REFRIGERATION COMPONENTS

A. Refrigerant circuit components shall include oil separator, high and low side pressure relief device, discharge and liquid line shutoff valves, replaceable-core filter drier, moisture indicating sight glass, electronic expansion device and complete operating charge of both refrigerant and compressor oil.

2.9 UNIT CONTROLS

A. All unit controls are housed in a weathertight NEMA 3R enclosure with removable plates to allow for customer connection of power wiring and remote interlocks. All controls, including sensors, are factory mounted and tested prior to shipment. All cataloged units are UL listed.
B. Microcomputer controls provide all control functions including start-up and shut down, leaving chilled water temperature control, compressor and electronic expansion valve modulation, fan sequencing, anti recycle logic, automatic lead/lag compressor starting and load limiting.

C. Unit protective functions include loss of chilled water flow, evaporator freezing, loss of refrigerant, low refrigerant pressure, high refrigerant pressure, reverse rotation, compressor starting and running over current, phase loss, phase imbalance, phase reversal, and loss of oil flow.

D. A menu driven digital display shall indicate operating data points including chilled water setpoint, current limit setpoint, leaving chilled water temperature, VSD speed, evaporator and condenser refrigerant pressures and temperatures. A diagnostic check shall be made and displayed when a problem is detected.

E. Condenser fan variable speed drives:
 1. Variable speed drives shall be solid state, microprocessor-based, pulse-width modulation (PWM) type utilizing insulated-gate bipolar transistor (IGBT) output power devices with a power factor of 0.95 or better at all loads and speeds.
 2. Provide drives with integral 5% impedance line reactor or DC link reactor to reduce the harmonics to the power line and to add protection from AC line transients. Variable speed drive voltage total harmonic distortion (THD) and harmonic current total demand distortion (TDD) shall not exceed 35%.
 3. Compressor drive controls shall automatically regulate compressor speed to optimize chiller efficiency over all chiller operating conditions. Compressor speed shall provide chiller unloading.
 4. All drives shall be air cooled. The variable speed drive enclosures shall be microprocessor controlled to maintain temperature within acceptable limits as determined by the manufacturer.
 5. All drives shall be suitable for continuous operation at nameplate voltage ±10%. Drives shall be suitable for continuous operation at 100% of nameplate amps and 150% of nameplate amps for 5 seconds.
 6. All drives shall be suitable for operation in ambient temperatures between 32 and 104°F, 95% humidity (non-condensing) for altitudes up to 3300 ft above sea level without derating.
 7. Variable speed drives shall comply with applicable ANSI, NEMA, UL, and NEC standards.

F. The digital display shall provide interface for programming and display of variable speed drives and chiller parameters.
 1. At a minimum, viewable data shall include:
 a. Operating, configuration, and fault messages
 b. Output frequency
 c. Output current
 d. Output voltage
 e. Output power
 2. At a minimum, viewable alarms and fault messages shall include:
 a. Under voltage
 b. Over voltage
 c. Over current
 d. Phase loss
 e. Phase reversal
 f. Ground fault
 g. Phase unbalance
 h. Single cycle voltage loss
 i. Motor overload
 j. Communication fault

2.10 POWER AND ELECTRICAL REQUIREMENTS

A. Provide factory mounted, single point connection including circuit breaker with external lockable handle. Circuit breaker shall have a minimum short circuit current rating of 65,000 AIC.
B. Provide factory mounted control power transformer to convert unit power voltage to 120V/1Ph/60Hz. Factory mounting shall include primary and secondary wiring between the transformer and the control panel.

2.11 ACCESSORY EQUIPMENT

A. A weighted sound pressure level shall not exceed 73 dba measured at 30 feet from chiller. Provide necessary sound attenuation equipment on chiller in order to meet these requirements.

B. Provide factory installed guards to prevent unauthorized access to compressors and other components.

C. Provide chiller with BACnet interface for integration into an Energy Management and Control System (EMCS) for monitoring of Chiller operations. BACnet interface shall be BACnet certified. Chiller microprocessor must be capable of receiving an EMCS input signal for Remote Run/Stop and Leaving Chilled Water Temperature Reset.

D. Provide factory installed low ambient head pressure control and all associated components for chiller operation down to 0°F.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Provide all items required as per manufacturer’s requirements.

C. Provide for connection to electrical service to chiller. Refer to Division 26. If cooler heater does not receive power from main chiller power supply via integral transformer, the Contractor shall be responsible to provide separate 120V, 15 Amp, electrical circuit for cooler heater.

D. Align chiller on concrete foundations, sole plates, and sub-bases. Level, grout, and bolt in place.

E. Install units on vibration isolation. Refer to Section 23 05 48 - Vibration and Seismic Controls for HVAC Piping and Equipment.

F. Provide cooler connections to chilled water piping. Refer to Sections 23 21 13 and 23 21 19. On inlet, provide thermometer well for temperature controller, thermometer well and thermometer, strainer, nipple and flow switch, pressure gauge, and shut-off valve. On outlet, provide thermometer well and thermometer, pressure gauge, and shut-off valve.

G. Insulate cold surfaces not provided with factory insulation. Refer to Sections 23 07 16 and 23 07 19.

H. Arrange piping for easy dismantling to permit cooler cleaning.

3.2 MANUFACTURER'S FIELD SERVICES

A. START-UP: Chiller manufacturer shall furnish start-up service. Refrigerant, oil, evacuation units and all other miscellaneous tools for start-up shall be furnished by the manufacturer. Concurrent owner instruction is to be furnished by the chiller manufacturer. Services shall be documented by a start-up completion record signed off by both the manufacturer and installing contractor.

B. Provide services of factory trained representative for minimum one day to leak test, refrigerant pressure test, evacuate, dehydrate, charge, start-up, calibrate controls, and instruct Owner on operation and maintenance.
C. Supply initial charge of refrigerant and oil.

D. Manufacturer shall furnish a start-up completion record, signed by the manufacturer's representative and the successful contractor and shall include:

1. Dates of start-up and personnel in attendance.
2. Dates of owner instruction and personnel in attendance.
3. Design performance data.
4. Actual performance data.

E. Manufacturer shall provide any controls not listed above, necessary for automatic chiller operation. Mechanical Contractor shall provide field control wiring necessary to interface sensors to the chiller control system.

END OF SECTION
SECTION 26 03 13
ELECTRICAL DEMOLITION FOR REMODELING

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Electrical demolition.

B. The contractor shall be responsible for loss or damage to the existing facilities caused by him and his workmen, and shall be responsible for repairing such loss or damage. The contractor shall send proper notices, make necessary arrangements, and perform other services required for the care, protection and in-service maintenance of all electrical services for the new and existing facilities. The contractor shall erect temporary barricades, with necessary safety devices, as required to protect personnel from injury, removing all such temporary protection upon completion of the work.

C. Outages of services as required by the new installation will be permitted but only at a time approved by the Owner. The contractor shall allow the Owner 2 weeks in order to schedule required outages. The time allowed for outages will not be during normal working hours unless otherwise approved by the Owner. All costs of outages, including overtime charges, shall be included in the contract amount.

D. The contractor shall provide temporary or new services to all existing facilities as required to maintain their proper operation when normal services are disrupted as a result of the work being accomplished under this project.

1.2 RELATED SECTIONS

A. Section 01120 - Alteration Project Procedures.

B. Section 02072 - Minor Demolition for Remodeling.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work: As specified in individual Sections.

B. Include in the contract price all rerouting of existing conduits, wiring, outlet boxes, fixtures, etc., and the reconnecting of existing fixtures as necessitated by field conditions to allow the installation of the new systems. Furnish all temporary conduit, wiring, boxes, etc., as required to maintain lighting and power service for the existing areas with a minimum of interruption. Remove wire and conduit back to nearest accessible active junction box and extend to existing homeruns as required.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify field measurements and circuiting arrangements are as shown on Drawings.

B. Verify that abandoned wiring and equipment serve only abandoned facilities.

C. Demolition Drawings are based on casual field observation and existing record documents. Report discrepancies to Owner before disturbing existing installation.

D. Beginning of demolition means installer accepts existing conditions.
3.2 PREPARATION

A. Disconnect electrical systems in walls, floors, and ceilings scheduled for removal.

B. Coordinate utility service outages with Utility Company.

C. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits use personnel experienced in such operations.

D. Existing Electrical Service: Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Obtain permission from Owner at least 24 hours before partially or completely disabling system. Minimize outage duration. Make temporary connections to maintain service in areas adjacent to work area.

E. Existing Fire Alarm System: Maintain existing system in service until new system is accepted. Disable system only to make switchovers and connections. Notify Owner and local fire service at least 24 hours before partially or completely disabling system. Minimize outage duration. Make temporary connections to maintain service in areas adjacent to work area.

F. Existing Telephone System: Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Notify Owner and Telephone Utility Company at least 24 hours before partially or completely disabling system. Minimize outage duration. Make temporary connections to maintain service in areas adjacent to work area.

G. Existing Public Address System: Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Obtain permission from the Owner and at least 24 hours before partially or completely disabling system. Minimize outage duration. Make temporary connections to maintain service in areas adjacent to work area.

3.3 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

A. Demolish and extend existing electrical work under provisions of Section 01120, Section 02072, and this Section.

B. Remove, relocate, and extend existing installations to accommodate new construction.

C. Remove abandoned wiring to source of supply.

D. Remove exposed abandoned conduit, including abandoned conduit above accessible ceiling finishes. Cut conduit flush with walls and floors, and patch surfaces.

E. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlets, which are not removed.

F. Disconnect and remove abandoned panelboards and distribution equipment.

G. Disconnect and remove electrical devices and equipment serving utilization equipment that has been removed.

H. Disconnect and remove abandoned luminaires. Remove brackets, stems, hangers, and other accessories.

I. Repair adjacent construction and finishes damaged during demolition and extension work.
J. Maintain access to existing electrical installations which remain active. Modify installation or provide access panel as appropriate.

K. Extend existing installations using materials and methods compatible with existing electrical installations, or as specified.

L. Where existing construction is removed to provide working and extension access to existing utilities, contractor shall remove doors, piping, conduit, outlet boxes, wiring, light fixtures, air conditioning ductwork and equipment, etc., to provide this access and shall reinstall same upon completion of work in the areas affected.

M. Where partitions, walls, floors, or ceilings of existing construction are being removed, all contractors shall remove and reinstall in locations approved by the Architect all devices required for the operation of the various systems installed in the existing construction.

N. During the construction and remodeling, portions of the project shall remain in service. Construction equipment, materials, tools, extension cords, etc., shall be arranged so as to present minimum hazard or interruption to the occupants of the building.

O. Certain work during the demolition phase of construction may require overtime or nighttime shifts or temporary evacuation of the occupants. Coordinate and schedule all proposed down time with the Owner’s Representative at least 72 hours in advance.

P. All existing lighting fixtures, switches, outlets, speakers, materials, equipment and appurtenances not included in the remodel or alteration areas are to remain in place and shall remain in service.

Q. Electrical equipment, outlets, speakers, circuits to mechanical and building systems equipment, etc., which are to remain but which are served by conduit and/or circuiting that is disturbed by the remodeling work, shall be reconnected in such a manner as to leave it in proper operating condition.

R. Existing branch circuit wiring which is to be removed, shall be pulled from the raceways and the empty conduit shall be removed to a point of permanent concealment.

S. Within the remodeled or alteration areas where existing walls are being removed, all existing lighting fixtures, switches, receptacles, other materials and equipment and their appurtenances shall be removed, where required by the remodel work either shown or specified.

T. New circuiting indicated to be connected to existing panels shall be connected to "spares" and/or "released" breakers as applicable, or new breakers provided where space is available. Contractor shall verify the existing panel load and feeder capacity prior to adding any additional loads.

U. In all the remodeled areas where existing ceilings are being removed and reinstalled, all existing lighting fixtures, other ceiling mounted devices (i.e. smoked detectors, speakers, etc.) and their appurtenances shall be removed and reinstalled, unless otherwise shown or specified. This also applies to new ceiling installations.

3.4 CLEANING AND REPAIR

A. Clean and repair existing materials and equipment which remain or are to be reused.

B. Panelboards: Clean exposed surfaces and check tightness of electrical connections. Replace damaged circuit breakers and provide closure plates for vacant positions. Provide typed circuit directory showing revised circuiting arrangement.

3.5 INSTALLATION

A. Install relocated materials and equipment under the provisions of Section 01120.
3.6 REMOVAL OF MATERIALS

A. The contractor shall modify, remove, and/or relocate all materials and items so indicated on the drawings or required by the installation of new facilities. All removals and/or dismantling shall be conducted in a manner as to produce maximum salvage. Salvage materials shall remain the property of the Owner, and shall be delivered to such destination as directed by the Owner. Materials and/or items scheduled for relocation and which are damaged during dismantling or reassembly operations shall be repaired and restored to good operative condition. The contractor may, at his discretion and upon the approval of the Owner, substitute new materials and/or items of like design and quality in lieu of materials and/or items to be relocated.

B. All items which are to be relocated shall be carefully removed in reverse to original assembly or placement and protected until relocated. The contractor shall clean, repair, and provide all new materials, fittings, and appurtenances required to complete the relocations and to restore to good operative order. All relocations shall be performed by workmen skilled in the work and in accordance with standard practice of the trades involved.

C. When items scheduled for relocation are found to be in damaged condition before work has been started on dismantling, the contractor shall call the attention of the Owner to such items and receive further instructions before removal. Items damaged in repositioning operations are the contractor’s responsibility and shall be repaired or replaced by the contractor as approved by the Owner, at no additional cost to the Owner.

D. Service lines and wiring to items to be removed, salvaged, or relocated shall be removed to points indicated on the drawings, specified, or acceptable to the Owner. Service lines and wiring not scheduled for reuse shall be removed to the points at which reuse is to be continued or service is to remain. Such services shall be sealed, capped, or otherwise tied-off or disconnected in a safe manner acceptable to the Owner. All disconnections or connections into the existing facilities shall be done in such a manner as to result in minimum interruption of services to adjacent occupied areas. Services to existing areas or facilities which must remain in operation during the construction period shall not be interrupted without prior specific approval of the Owner as hereinbefore specified.

END OF SECTION
PART 1 - GENERAL

1.1 SCOPE
 A. Provide 600 volt building wire, cable and connectors and 300 volt wire, cable and connectors.
 B. WORK INCLUDED: Include the following Work in addition to items normally part of this Section.
 1. Wiring for lighting, dimming controls and power.
 2. Automatic Control Wiring.
 3. Connection of equipment shown.
 C. WORK SPECIFIED ELSEWHERE:
 1. Heating, ventilating, and air conditioning equipment.
 2. Structured cabling system.
 3. Coaxial cables

1.2 REFERENCE STANDARDS
 A. UL 83 - Thermoplastic-Insulated Wires and Cables
 B. ASTM B3 - Standard Specification for Soft or Annealed Copper Wire
 C. NFPA 70 - National Electrical Code
 D. All wire cable and connectors shall be UL approved.
 E. NEMA
 F. NEMA Bulletin 119

1.3 ACCEPTABLE MANUFACTURERS
 A. 600 VOLT WIRE AND CABLE
 1. Southwire
 2. Encore
 3. Cerro
 B. 300 VOLT WIRE AND CABLE
 1. Westpenn
 2. Beldon
 3. Alpha
 4. Tappan - Southwire
 C. FLEXIBLE CABLE SYSTEMS
 1. AFC Modular Cable Systems
 2. Kaf-Tech
 D. CONNECTORS
1. Ilsco
2. Cooper
3. AMP - TYCO
4. Burndy
5. Ideal
6. 3M
7. O.Z. Gedney
8. Thomas & Betts
9. Buchanan

1.4 SUBMITTALS
A. Shop drawings shall include, but not limited to:
 1. Cutsheets of wire, cable and connectors to indicate the performance, fabrication
 procedures, product variations, and accessories.

1.5 REQUIREMENTS OF REGULATORY AGENCIES WORK IN ACCORDANCE WITH:
A. National Electrical Code.
B. Local, municipal, or state codes that have jurisdiction.

PART 2 - PRODUCTS

2.1 WIRING
A. All wire shall be new and continuous without weld, splice, or joints throughout its length. It must be
 uniform in cross-section, free from flaws, scales and other imperfections.
B. WIRE MATERIAL: Conductors shall be soft drawn, annealed copper. Aluminum wiring is not
 acceptable unless otherwise noted on drawings.
C. TYPES:
 1. Provide type “THHN/THWN-2” insulation for all buried feeders and service entrance
 conductors.
 2. Provide type “THHN/THWN-2” insulation for all branch circuits and above grade feeders.
 3. All wire No. 8 and larger shall be stranded. All wire No. 10 and smaller shall be stranded
 or solid.
 4. Provide type “XHHW” or other 90 degrees insulation wiring for branch circuit wiring
 installed through continuous rows of fixture bodies.
 5. All 300-volt cable including but not limited to telephone, fire alarm, data, CATV and
 security shall be UL listed for use in return air plenums.
 6. All dimming conductors shall be 300 volt, 75 C plenum rated. Dimming conductors shall
 be solid. Stranded conductors are not acceptable.
D. CONDUCTOR SIZES
 1. Feeder conductors shall be sized for a maximum of 2% drop in rated voltage at scheduled
 load.
 2. Branch circuit conductors shall be sized for a maximum 3% drop in the rated voltage to
 the longest outlet on the circuit.
 3. Minimum wire shall be 12 AWG, unless otherwise shown on Drawings or required by
 Code.
 4. Minimum wire size for 0-10v dimming controls shall be 18 AWG for conductors not
 exceeding 300 feet circuit length (one-way) and 16 AWG for those exceeding 300 feet
 (one-way).
E. COLOR CODING: No. 6 or larger shall use tape for color coding. No. 8 and smaller wire shall be
 color coded in accordance with the governing authority requirements or as follows:
120/208 Volt
Neutral: White
Phase A: Black
Phase B: Red
Phase C: Blue
Ground: Green

277/480 Volt
Neutral: Gray
Phase A: Brown
Phase B: Purple
Phase C: Yellow
Ground: Green

120/240 Volt
Neutral: White
Phase A: Black
Phase B: Orange
Phase C: Blue
Ground: Green

0-10 Volt dimming conductors
Purple (source)
Pink (common)

2.2 GROUNDING
A. Permanently connect all conduit work, motors, starters, and other electrical equipment to grounding system in accordance with NFPA 70.

PART 3 - EXECUTION

3.1 WIRE
A. Do not pull wire into conduit until Work of an injurious nature is completed. Where two or more circuits run to a single outlet box, each circuit shall be properly tagged. Wyreze or approved equal may be used as a lubricant where necessary.

B. Splices shall be fully made up in outlet boxes with compression crimp-on type splice connectors.

C. Joints and splices will not be permitted in service entrance or in feeders. Joints in branch circuits will be permitted where branch circuits divide, and then shall consist of one through-circuit to which the branch shall be spliced. Joints shall not be left for the fixture hanger to make. Connect joints and splices with Buchanan Series “2000” solderless connectors complete with insulating caps or properly sized twist on wire nuts. “Wago” push-in connectors are not acceptable.

D. All stranded conductors shall be furnished with lugs or connectors.

E. Connectors furnished with circuit breakers or switches shall be suitable for copper wire termination.

F. “Sta-Cons” shall be used to terminate stranded conductors on all switches and receptacles.

G. All stranded #10 and small conductors shall be terminated with an approved solderless terminal if the device or light fixture does not have provisions for clamp type securing of the conductor.

H. The jacket for all travelers used on 3-way and 4-way switches shall be pink.

I. Route conductors for 480Y/277 systems in a separate raceway. Do not combine with 208Y/120 volt or 120/240 volt systems.

J. Emergency circuits shall not be routed with normal conductors.

3.2 BALANCING SYSTEM
A. The load on each distribution and lighting panel shall be balanced to within 10% by proper arrangement of branch circuits on the different phase legs. Provide written documentation showing results. Submit with O & M manuals.

3.3 LOW VOLTAGE WIRING

A. Low voltage wiring, including dimming conductors, shall be plenum rated. All wiring in mechanical rooms, electrical rooms, drywall ceiling, inaccessible areas, underground, plaster ceiling, inside concealed walls areas exposed to occupant view, and other areas subject to physical damage shall be run in conduit.

B. Low voltage wiring shall be routed in separate raceways from power wiring systems.

C. Sleeves shall be placed in the forms of concrete, masonry and fire rated walls, floor slabs and beams, for the passage of wiring. Sleeves should be set in place a sufficient time ahead of the concrete work so as not to delay the work. Sleeves shall be rigid galvanized steel.

D. Provide Caddy J-hooks supported independently from other system to support cable at 4-foot on center or closer if required by manufacturer.

E. Provide a junction box to make up all joints and splices.

F. Provide dimming conductors for all lighting circuits located in spaces with dimmer switches and theatrical lighting as indicated on the drawings and as specified.

3.4 CABLE SUPPORTS

A. Provide cable supports in all vertical raceways in accordance with Article 300-19 of NFPA 70.

3.5 DEFECTS

A. Defects shall include, but are not to limited to, the following:

1. Tripping circuit breakers under normal operation.
2. Improperly connected equipment.
3. Damaged, torn, or skinned insulation.

END OF SECTION
SECTION 26 05 26

GROUNDING

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

1.2 SCOPE

A. WORK COMBINED WITH OTHER SECTIONS: Combine the work specified herein with the following Sections to form a single responsibility for the Work:

 1. Electrical.
 2. Basic materials and methods.

B. Provide electrical service, equipment and wiring device grounding as shown, scheduled and as specified.

C. The types of grounding include, but not limited to, the grounding bonding of all equipment devices, building steel piping, and as required by the National Electrical Code, Local Inspection Department and Power Company.

1.3 STANDARDS

A. National Electrical Code (NFPA-70)

B. Local municipal and State codes that have jurisdiction.

C. NECA

1.4 ACCEPTABLE MANUFACTURES

A. Provide grounding products manufactured by Copperweld and Cadweld.

1.5 SUBMITTALS

A. Shop drawings shall include, but not limited to the following:

 1. Cut sheets of ground rods, clamps and connectors.
 2. Grounding system diagram.

PART 2 - PRODUCTS

2.1 GENERAL

A. Provide all materials required to construct a complete grounded electrical system.

B. GROUND RODS: Ground rods shall be 3/4" inch diameter by 10 feet long construction with copper jacket and a steel core.

C. CLAMPS: Ground clamps shall be copper except for steel or iron pipes in which the clamps shall be galvanized iron.
D. CONDUCTORS: Conductors shall be connected by means of an approved pressure connector or clamp.

PART 3 - EXECUTION

3.1 INSTALLATION

A. GENERAL: Install grounding system as shown and specified to ensure a properly grounded system.

B. BUILDING STEEL AND PIPING SYSTEM: Install a bonding jumper between building steel and metallic piping systems to bond them to the electrical grounding system.

C. NEUTRAL: The neutral shall be grounded only at the service entrance and other separately derived systems. The neutral shall be kept separate from the grounding system and shall not be used as a ground.

D. GROUNDING CONDUCTOR: A grounding conductor and metallic conduit system shall bond all equipment served by the electrical system. Provide a flexible bonding jumper for isolated metallic piping and ductwork and around expansion fittings and joints.

E. CONDUIT GROUNDING BUSHING: Conduit terminating in equipment that has a ground bus such as switchboards, panelboards, etc., shall have grounding bushings installed. Ground each conduit by means of a grounding bushing and to the ground bus in the equipment.

F. MOTORS: The frame of all motors shall be grounded.

3.2 TESTING

A. Perform a ground resistance test using a biddle analog or digital portable earth/ground resistance tester. The system resistance shall not exceed 5 Ohms. Provide additional electrodes as required (refer to 250-84 and 250-56 of the most current edition NEC). Test shall not be conducted following wet weather. Provide personal instruments to conduct these tests and submit certified test for review. Test shall be verified by Engineer.

END OF SECTION
PART 1 - GENERAL

1.1 SCOPE

A. Provide electrical raceways and fittings as shown, scheduled and specified.

B. The types of raceways and fittings required are as follows:

1. Rigid hot-dipped galvanized steel conduit (GRC) (RMC)
2. Intermediate hot-dipped galvanized steel conduit (IMC)
3. Electrical metallic tubing (EMT)
4. PVC (Sch. 40 & 80)
5. Flexible metal conduit (FMC)
6. Liquid-tight flexible metal conduit (LFMC)
7. PVC coated rigid galvanized steel conduit
8. Rigid Aluminum Conduit (RAC)

1.2 STANDARDS

A. ANSI, C80.1 & C80.3

B. NEMA FB-1

C. NEMA TC3

D. UL, 6, 797 & 1242

1.3 ACCEPTABLE MANUFACTURERS

A. Raceways

1. Allied
2. Republic
3. Prime Conduit (Carlon)
4. Wheatland Tube
5. Cantex
6. Western Tube
7. Robroy Industries

B. Fittings

1. Appleton
2. Crouse Hinds
3. Steel City
4. O.Z. Gedney
5. Carlon
6. Raco, Inc.
7. Bridgeport

C. Boxes

1. RACO
2. Thomas and Betts
3. EATON
4. Crouse-Hinds
5. Appleton
D. Surface

1. Hubbell
2. Wiremold

1.4 SUBMITTALS

A. Product data shall include but not be limited to:

1. Cutsheets for raceways, fitting, solvents, primers, etc.

1.5 REQUIREMENTS OF REGULATORY AGENCIES WORK IN ACCORDANCE WITH:

A. National Electrical Code.

B. Local, municipal, or state codes that have jurisdiction.

PART 2 – PRODUCTS

2.1 CONDUIT AND FITTINGS

A. Rigid Galvanized Steel Conduit.

1. Hot-dip galvanized rigid steel conduit, galvanized after fabrication. Products shall comply with UL6 and ANSI C80.1. All threads shall be galvanized after cutting. A uniform zinc coating shall be applied to the inner and outer walls.
2. Fittings shall be threaded and shipped with thread protectors.

B. Aluminum Rigid Conduit

1. Rigid aluminum (alloy 6063-T1) conduit shall be manufactured using 6063 Alloy in temper designation T-1. Products shall comply with UL6A and ANSI 680.5
2. Fittings for rigid aluminum conduit shall be threaded aluminum shipped with thread protectors.

C. PVC Coated Rigid Galvanized Steel Conduit.

1. Conduit shall be same as rigid metal conduit with a factory-applied 40-mil-thick covering of polyvinyl chloride (PVC) bonded to the metal.
2. Fittings shall be the same as rigid metal conduit fittings with a factory-applied, 40-mil-thick covering of polyvinyl chloride (PVC) bonded to the metal

D. Intermediate Metal Conduit (IMC).

1. Conduit shall be similar to rigid steel conduit except thinner wall.
2. Fittings shall be threaded hot-dipped galvanized and shipped with thread protectors.

E. Electrical Metallic Tubing (EMT).

1. EMT shall be made of hot-dip galvanized strip steel. The interior shall be coated with a corrosion-resistant lubricant for ease of wiring pulling.

F. Rigid Nonmetallic Conduit (PVC).

1. Conduit shall be schedule 40 or 80 polyvinyl chloride (PVC), UV stabilized, rated for 90°C conductors.
2. Fittings shall be solvent weld socket type.
G. Flexible Metal Conduit (Greenfield).
 1. Spirally wound continuously interlocked zinc coated strip steel.
 2. Fittings shall be one screw for smaller than 1-1/2-inch, two screw for 1-1/2-inch and larger, double clamp steel or malleable iron, either cadmium plated or hot-dip galvanized.

H. Liquid-Tight Flexible Steel Conduit (Seal Tite).
 1. Spirally wound continuously interlocked zinc coated strip steel with a UV stabilized polyvinyl chloride (PVC) outer jacket bonded to the conduit.
 2. Fittings shall be compression type, malleable iron, with insulated throat, either cadmium plated or hot-dip galvanized.

2.2 FITTINGS

A. Couplings for rigid steel or intermediate conduit shall be hot dipped galvanized steel. Set screw type is not acceptable.

B. Steel or malleable iron fittings shall be used on all other raceway types except for PVC. Die-cast fittings are not allowed.

C. Couplings for aluminum raceways shall be threaded aluminum.

D. EMT systems shall utilize steel insulated throat, set-screw connectors and steel set-screw couplings in all indoor conditioned spaces. EMT system shall utilize steel insulated throat, threadless, watertight compression type connectors and steel threadless watertight compression type coupling in all non-conditioned spaces and in grout filled CMU walls.

E. Coupling and connectors accessories and fittings for PVC coated rigid galvanized steel shall be PVC coated.

F. Liquidtight Flexible Metal Conduit (LFMC) fittings shall be steel. Plastic is not acceptable.

G. Provide nylon bushing on end of all low voltage cabling system conduits (sleeves, rough-ins, etc.).

PART 3 - EXECUTION

3.1 PROVIDE CONDUIT AS FOLLOWS:

A. GENERAL: The Drawings are diagrammatic, and are intended to show the general location of outlets, devices, fixtures, and arrangement and control of circuits. The Contractor shall determine exact locations by actual measurement of the building or by reference to the Architectural Drawings.

B. Except as noted or otherwise specified, all wiring shall be installed in galvanized rigid steel, rigid aluminum conduit or electrical steel tube (EMT) of the proper size to contain the number of conductors required in accordance with the latest edition of the N.E.C. Where conduit sizes are shown on the drawings, these shall take preference. Contractor shall epoxy coat galvanized rigid steel conduit for use in natatoriums.

C. Raceways shall not be routed below or within slab-on-grade, foundations, or below grade of suspended slab structures, unless specifically noted or indicated otherwise on plan.

D. EMT in sizes up to 4 inches when concealed or not exposed to damage and located indoors only. (EMT is not acceptable in wet and damp location.)

E. PVC coated rigid galvanized steel shall be used for all penetrations of slab on grade.
F. Rigid galvanized steel where embedded in concrete or masonry construction, mechanical yard or in exterior/interior applications where subject to damage.

G. Rigid aluminum shall be used in exterior applications. (i.e. roof, top of canopies)

H. PVC schedule 40 and 80 may be utilized underground, in or below slab where shown on the construction documents.

I. MINIMUM SIZE: 3/4 inch.

J. PVC coated rigid galvanized steel conduit shall be coated inside and outside.

K. PVC coated rigid galvanized steel conduit shall be used at cooling towers, corrosive areas and pool pump rooms.

L. Fixture whips: Refer to 26 51 19 for additional information.

M. Flexible metal shall be used for connecting rotating equipment installed in conditioned spaces.

N. Liquidtight Flexible Metal Conduit (LFMC) shall be used for connecting rotating equipment installed in non-conditioned spaces and outside.

O. Of such size, and so installed that conductors may be drawn in without injury or excessive strain.

P. Where entering panels, pull boxes, junction boxes, or outlet boxes, shall be secured in place with lock nuts inside and outside, and insulated bushings inside.

Q. Have Red seal type VCC or approved equal cable supports in risers, as required by N.E.C.

R. Have ends reamed after cutting and application of die.

S. Keep conduit corked and dry during construction, and swab out before conductors are pulled.

T. Have bends and offsets made with approved tools. Bends or offsets in which the pipe is crushed or deformed shall not be installed.

U. Where not embedded in concrete or masonry, be firmly secured by approved clamps, half-straps or hangers.

V. Have O.Z. Gedney or approved equal expansion fittings where crossing building expansion joints.

W. Except in the mechanical equipment rooms, run conduit concealed, and by the shortest practicable route between outlets. Install risers, drops, and offsets necessary to avoid conflict with ductwork, piping, structural members, and similar items.

X. Install exposed conduit in mechanical rooms, and elsewhere as indicated, parallel to horizontal and vertical lines of walls, ceilings, and floors.

Y. Fixtures in finished areas having suspended acoustical ceilings shall be connected to outlet boxes of lighting grid by flexible metal conduit; length not to exceed ten feet (six feet if using 3/8" manufactured fixture "whips").

Z. Outlet boxes in partitions shall never be set back to back. They shall be offset to prevent undue noise transmission from room to room.

AA. Concealed conduit shall run in as direct manner as possible using long bends. Exposed conduit shall be run parallel with or at right angles to the lines of the building; and all bends shall be made with standard conduit elbows or conduit benders. Not more than equivalent of four quarter bends shall be used in any run between terminals and cabinet, of between outlet or junction boxes.
Approved condulets shall be used in lieu of conduit elbows where ease of installation and appearance warrants their use and approved by the engineer. Conduit joints shall be made with approved couplings and unions.

BB. Conduits shall be continuous from outlet to outlet and from outlets to cabinets, junction or pull boxes and shall be electrically continuous throughout. Terminals of all conduits shall be provided with double lock nuts and bushing or terminated on conduit hubs. Use of running threads is prohibited.

CC. Each entire conduit system shall be installed complete before any conductors are drawn in. Every run of conduit shall be finished before covering up to guard against obstructions and omissions.

DD. Sleeves shall be placed in the forms of concrete, masonry and fire rated walls, floor slabs and beams, for the passage of conduits. Sleeves should be set in place a sufficient time ahead of the concrete work so as not to delay the work. Sleeves shall be rigid galvanized steel with a minimum thickness of 1.07MM and set to extend 4” above slab.

EE. All pipe penetrations through walls and concrete floors shall be fire rated by applying USG Thermafiber in the space between the concrete and the pipe. The fire rating shall be additionally sealed by using 3M brand model CP 25 or 303 fire barrier caulk and putty. All fire rating material shall be installed in accordance with manufacturer’s printed instructions.

FF. All conduit shall be cleaned and swabbed to remove all foreign matter and moisture prior to pulling wire and cable. All boxes in which conduits terminate shall be cleaned of all concrete mortar and other foreign matter.

GG. Provide #30 nylon pulling line in all conduits in which permanent wiring is not installed.

HH. All conduit shall be securely fastened and supported using hot galvanized malleable iron one-hole pipe straps, clamps, hanger or other means approved by the engineer. Supports shall be as required per NEC. Tie wire shall not be used as support or securing means. Support conduit independently of ceiling hanger wire. Use all thread rods to support outlet boxes, junction boxes and conduit.

II. When PVC conduit is routed underground, all stub-up’s and bends 15° and greater shall be PVC coated rigid galvanized steel. Use PVC coated rigid galvanized steel when penetrating concrete on grade.

JJ. Flexible and liquid-tight flexible steel conduit shall be used for final connections to utilization equipment. Liquid-tight flexible steel conduit shall be used for all exterior locations and all interior locations subject to moisture, vibrations, rotating equipment and dry-type transformers. Refer to Section 26 02 00 for additional information concerning flexible steel conduit. LFNC may be used in lieu of flexible steel conduit where allowed by the NEC and the City of San Antonio.

KK. Contact the Architect and Engineer for an installation review before covering any below grade or above grade conduit.

LL. All new outlets shall be flush mounted. In remodeled areas where wall construction prohibits flush mounting, provide Hubbell 2400 series, unless noted otherwise. Verify exact location and routing with architect before installation.

MM. Contractor shall not penetrate water proof barriers without using proper fitting to maintain barriers. This shall include exterior walls and slabs. Coordinate with Architect for proper methods.

3.2 CONDUIT CORROSION PROTECTION

A. Branch circuit conduits installed in concrete slabs on fill or grade shall be positioned in a manner to ensure complete concrete cover. In no case shall such conduits be exposed below or above the slab surfaces, or penetrate the waterproof membrane.
B. At locations where metallic conduits pass through slabs on grade or transitions below grade, PVC coated rigid galvanized conduit shall be used. Contractor may use 3M corrosive protective tape on rigid galvanized conduit in lieu of PVC coated rigid galvanized conduit.

C. Conduit installed in the air gap between the water-resistant barrier and finish brick shall not exceed 2-ft. in length.

3.3 EXPANSION JOINTS

A. Install approved expansion fitting in all conduit runs in excess of 150 feet or when crossing building expansion joints.

3.4 OUTLET AND JUNCTION BOXES

A. Provide an approved galvanized outlet box with adequate volume for number of conductors installed.

B. Provide standard galvanized switch boxes of the required number of gangs. Switch boxes where conduit is exposed shall be handy boxes or approved equal.

C. Outlet boxes for receptacles shall be similar to Universal 52151 with suitable raised cover. Receptacle boxes where conduit is exposed shall be handy boxes or approved equal.

D. Weatherproof boxes shall be FS or FD. Provide these boxes in all non-conditioned areas, exterior areas and natatoriums.

E. Outdoor boxes shall be NEMA 3R, with conduit connections made by Myers Hubs.

F. See notes and details on Drawings for special box requirements.

G. Provide junction boxes required to facilitate installation of the various conduit systems. Provide support boxes required for risers, each complete with approved cable supports as described elsewhere in this Division.

H. Outlet boxes for drywall shall be standard galvanized 4” square boxes with the appropriate device cover. Secure all outlet boxes with a backing brace connected to two adjacent studs. Mounting brackets with a single ear to rest against the backing sheet rock are not acceptable.

I. Provide floor outlet fittings for telephone to match fittings for duplex floor receptacles.

J. Provide 3-1/2” deep gangable masonry boxes in all masonry wall (CMU). Steel City GW-135-G or approved equal.

K. Provide shallow 4”x4” boxes in all demountable partitions.

L. Metallic boxes located in fire rated walls or partitions shall be separated by a minimum horizontal distance of 24 in. This minimum separation distance between metallic boxes may be reduced when “Wall Opening Protective Materials” (CLIV) are installed according to the requirements of their Classification. Metallic boxes shall not be installed on opposite side of walls or partitions of staggered stud construction unless “Wall Opening Protective Materials” are installed with the metallic boxes in accordance with Classification requirements for the protective materials.

M. Junction, pull boxes, condulets, gutters, disconnects, contactors, etc., above 2-foot x 2-foot grid ceilings shall be mounted within 18-inches of ceiling grid. Above 2-foot x 4 – foot grid ceiling they shall be mounted within 30-inches of ceiling grid. All junction box, pull box, gutter openings shall be side or bottom accessible.

N. Junction boxes are prohibited above drywall or plaster ceilings except for lighting; and those must be mounted directly over light fixture opening. Route power, PA, fire alarm conduits to nearest lay-
in ceiling.

3.5 THRU-WALL SEALS

A. Provide O.Z. Gedney “Thru-wall” seals for all conduits passing through concrete structure below grade, above grade, and floor penetrations below grade. These prevent moisture from entering the building.

B. Straight sleeves are not acceptable.

3.6 PULL BOXES

A. Interior Pull boxes shall be provided for conduit systems as required and shall be constructed of galvanized steel of not less than gauge and size specified by National Electrical Code. Size pull boxes per NEC 314.28.

B. Where two or more feeders pass through a common pull box, they shall be tagged to indicate clearly their electrical characteristics, circuit number, and panel designation.

C. Exterior in-ground pull boxes shall have open bottoms with sand and rock beds below box for drainage of water. Provide closed bottom boxes where specified. Closed bottom boxes shall be provided with sumps for portable pump to allow for extracting water. Refer to details on the drawings.

D. Pull boxes mounted in pole bases shall be coordinated with the pour of the pole base and shall be flush with finished footing.

END OF SECTION
SECTION 26 28 13

FUSES

PART 1 - GENERAL

1.1 SCOPE
A. Provide fuses as shown and scheduled and indicate by this specification section and other specifications sections.
B. The type of fuses include:
 1. 600 volt current limiting.
 2. 250 volt current limiting.

1.2 STANDARDS
A. ANSI
B. UL

1.3 ACCEPTABLE MANUFACTURERS
A. Eaton Bussmann
B. Mersen

1.4 SUBMITTALS
A. Shop drawings shall include, but not be limited to:
 1. Cutsheets of all fuses showing ratings and fuse curves.

1.5 REQUIREMENTS OF REGULATORY AGENCIES
A. WORK IN ACCORDANCE WITH:
 2. Local, municipal, or state codes that have jurisdiction.

PART 2 - PRODUCTS

2.1 CURRENT - LIMITING FUSES
A. General: Provide 200,000 amp interrupting capacity current limiting fuses of the ampacity and voltage indicated and scheduled.
B. Class J Fuses
 1. Circuits 0 to 600 ampere shall be protected by current limiting BUSSMANN LOW-PEAK Dual Element Fuses LPJ. All dual-element fuses shall have separate overload and short-circuit elements. Fuse shall incorporate a spring activated thermal overload element having a 284 degree Fahrenheit melting point alloy and shall be independent of the short-circuited clearing chamber. The fuse must hold 500% of rated current for a minimum of 10 seconds and listed by Underwriters' Laboratories Inc., with an interrupting rating of 200,000 amperes rRMS symmetrical. The fuses shall be UL Class J.
 2. Motor Circuits - All individual motor circuits rated 600 amperes or less shall be protected by BUSSMANN LOW-PEAK LPJ. The fuses for 1.15 service factor motors shall be
installed in ratings approximately 125% of motor full current except where high ambient
temperatures prevail, or where the motor drives a heavy revolving part which cannot be
brought up to full speed quickly, such as large fans. Under such conditions the fuse
should be 150% to 200% of the motor full load current. Larger H.P. Motor shall be
protected by BUSSMANN Type KRP-C HI-CAP Time-Delay Fuses of the rating shown on
the drawings. 1.0 service factor motors shall be protected by BUSSMANN LOW-PEAK
Dual-Element Fuses LPJ installed in ratings approximately 115% of the motor full load
current except as noted above. The fuses shall be UL Class LPJ or L. Circuit breaker
panels shall be protected by BUSSMANN LOW-PEAK Dual-Element LPJ as shown on the
drawings. The fuses shall be UL Class J.

2.2 SPARES

A. Upon completion of the building the contractor shall provide the owner with spare fuses as shown
below.

1. 10% (minimum of 3) of each type and rating of installed fuses shall be supplied as spares.
2. BUSSMANN spare fuse cabinets - Catalog No. SFC - shall be provided to store the above
spares.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Fuses: Fuses shall not be installed until equipment is ready to be energized. This measure
prevents fuse damage during shipment of the equipment from the manufacturer to the job-site or
from installation. All fuses shall be furnished and installed by the electrical contractor. All fuses shall
be of the same manufacturer.

B. All fuses shall be installed in fuse holders.

END OF SECTION